1. Assessing the viability of extended nonmetal atom chains in M(n)F(4n+2) (M=S and Se).
- Author
-
Popov IA, Averkiev BB, Starikova AA, Boldyrev AI, Minyaev RM, and Minkin VI
- Abstract
Theoretical investigations to evaluate the viability of extended nonmetal atom chains on the basis of molecular models with the general formula Mn F4n+2 (M=S and Se) and corresponding solid-state systems exhibiting direct SS or SeSe bonding were performed. The proposed high-symmetry molecules were found to be minima on the potential energy surface for all Sn F4n+2 systems studied (n=2-9) and for selenium analogues up to n=6. Phonon calculations of periodic structures confirmed the dynamic stability of the -(SF4 -SF4 )∞ - chain, whereas the analogous -(SeF4 -SeF4 )∞ - chain was found to have a number of imaginary phonon frequencies. Chemical bonding analysis of the dynamically stable -(SF4 -SF4 )∞ - structure revealed a multicenter character of the SS and SF bonds. A novel definition and abbreviation (ENAC) are proposed by analogy with extended metal atom chain (EMAC) complexes., (© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Published
- 2015
- Full Text
- View/download PDF