1. Long-term regeneration of fast and slow murine skeletal muscles after induced injury by ACL myotoxin isolated from Agkistrodon contortrix laticinctus (broad-banded copperhead) venom.
- Author
-
Salvini TF, Morini CC, Selistre de Araújo HS, and Ownby CL
- Subjects
- Animals, Histocytochemistry, Male, Mice, Muscle Fibers, Fast-Twitch cytology, Muscle Fibers, Slow-Twitch cytology, Muscle, Skeletal drug effects, Muscle Fibers, Fast-Twitch physiology, Muscle Fibers, Slow-Twitch physiology, Muscle, Skeletal physiology, Regeneration physiology, Snake Venoms poisoning
- Abstract
The aim of the present work was to analyze the regenerated muscle types I and II fibers of the soleus and gastrocnemius muscles of mice, 8 months after damage induced by ACL myotoxin (ACLMT). Animals received 5 mg/kg of ACLMT into the subcutaneous lateral region of the right hind limb, near the Achilles tendon; contralateral muscles received saline. Longitudinal and cross sections (10 microm) of frozen muscle tissue were evaluated. Eight months after ACLMT injection, both muscle types I and II fibers of soleus and gastrocnemius muscles still showed centralized nuclei and small regenerated fibers. Compared with the left muscle, the incidence of type I fibers increased in the right muscle (21% +/- 03% versus 12% +/- 06%, P = 0.009), whereas type II fibers decreased (78% +/- 02% versus 88% +/- 06%, P = 0.01). The incidence of type IIC fibers was normal. These results confirm that ACLMT induced muscle type fiber transformation from type II to type I, through type IIC. The area analysis of types I and II fibers of the gastrocnemius revealed that injured right muscles have a higher percentage of small fibers in both types I and II fibers (0-1,500 microm2) than left muscles, which have larger normal type I and II fibers (1,500-3,500 microm2). These results indicate that ACLMT can be used as an excellent model to study the rearrangement of motor units and the transformation of muscle fiber types during regeneration.
- Published
- 1999
- Full Text
- View/download PDF