1. Fast and accurate enzyme activity measurements using a chip-based microfluidic calorimeter
- Author
-
Kourosh Honarmand Ebrahimi, Peter-Leon Hagedoorn, Morten M. C. H. van Schie, and Wilfred R. Hagen
- Subjects
0301 basic medicine ,Materials science ,Microfluidics ,Biophysics ,Nanotechnology ,Calorimetry ,Incomplete mixing ,Protein Engineering ,01 natural sciences ,Biochemistry ,Diffusion ,Phosphate ionization ,03 medical and health sciences ,Enzyme calorimetry ,Alkaline phosphatase ,Miniaturization ,Calibration ,Chemical calibration method ,Animals ,Molecular Biology ,010401 analytical chemistry ,Cell Biology ,Microfluidic Analytical Techniques ,Chip ,High-Throughput Screening Assays ,0104 chemical sciences ,Calorimeter ,030104 developmental biology ,Product inhibition ,Chip-based calorimetry ,Cattle - Abstract
Recent developments in microfluidic and nanofluidic technologies have resulted in development of new chip-based microfluidic calorimeters with potential use in different fields. One application would be the accurate high-throughput measurement of enzyme activity. Calorimetry is a generic way to measure activity of enzymes, but unlike conventional calorimeters, chip-based calorimeters can be easily automated and implemented in high-throughput screening platforms. However, application of chip-based microfluidic calorimeters to measure enzyme activity has been limited due to problems associated with miniaturization such as incomplete mixing and a decrease in volumetric heat generated. To address these problems we introduced a calibration method and devised a convenient protocol for using a chip-based microfluidic calorimeter. Using the new calibration method, the progress curve of alkaline phosphatase, which has product inhibition for phosphate, measured by the calorimeter was the same as that recorded by UV-visible spectroscopy. Our results may enable use of current chip-based microfluidic calorimeters in a simple manner as a tool for high-throughput screening of enzyme activity with potential applications in drug discovery and enzyme engineering.
- Published
- 2017