1. Daily protein supplementation attenuates immobilization-induced blunting of postabsorptive muscle mTORC1 activation in middle-aged men.
- Author
-
Zeng N, D'Souza RF, MacRae CL, Figueiredo VC, Pileggi CA, Markworth JF, Merry TL, Cameron-Smith D, and Mitchell CJ
- Subjects
- Adaptor Proteins, Signal Transducing metabolism, Cell Cycle Proteins metabolism, Humans, Immobilization, Male, MicroRNAs genetics, MicroRNAs metabolism, Middle Aged, Milk Proteins metabolism, Muscular Atrophy metabolism, Muscular Atrophy pathology, Muscular Atrophy physiopathology, Nuclear Proteins genetics, Nuclear Proteins metabolism, Phosphorylation, Postprandial Period, Quadriceps Muscle pathology, Quadriceps Muscle physiopathology, Ribosomal Protein S6 metabolism, Ribosomal Protein S6 Kinases, 70-kDa metabolism, Signal Transduction, Time Factors, Treatment Outcome, Dietary Supplements, Mechanistic Target of Rapamycin Complex 1 metabolism, Milk Proteins administration & dosage, Muscular Atrophy diet therapy, Quadriceps Muscle metabolism
- Abstract
Disuse-induced muscle atrophy is accompanied by a blunted postprandial response of the mammalian target of rapamycin complex 1 (mTORC1) pathway. Conflicting observations exist as to whether postabsorptive mTORC1 pathway activation is also blunted by disuse and plays a role in atrophy. It is unknown whether changes in habitual protein intake alter mTORC1 regulatory proteins and how they may contribute to the development of anabolic resistance. The primary objective of this study was to characterize the downstream responsiveness of skeletal muscle mTORC1 activation and its upstream regulatory factors, following 14 days of lower limb disuse in middle-aged men (45-60 yr). The participants were further randomized to receive daily supplementation of 20 g/d of protein ( n = 12; milk protein concentrate) or isocaloric carbohydrate placebo ( n = 13). Immobilization reduced postabsorptive skeletal muscle phosphorylation of the mTORC1 downstream targets, 4E-BP1, P70S6K, and ribosomal protein S6 (RPS6), with phosphorylation of the latter two decreasing to a greater extent in the placebo, compared with the protein supplementation groups (37% ± 13% vs. 14% ± 11% and 38% ± 20% vs. 25% ± 8%, respectively). Sestrin2 protein was also downregulated following immobilization irrespective of supplement group, despite a corresponding increase in its mRNA content. This decrease in Sestrin2 protein was negatively correlated with the immobilization-induced change in the in silico-predicted regulator miR-23b-3p. No other measured upstream proteins were altered by immobilization or supplementation. Immobilization downregulated postabsorptive mTORC1 pathway activation, and 20 g/day of protein supplementation attenuated the decrease in phosphorylation of targets regulating muscle protein synthesis.
- Published
- 2021
- Full Text
- View/download PDF