1. Nonlinear Eigenvalues.
- Author
-
Gohberg, I., Alpay, D., Arazy, J., Atzmon, A., Ball, J. A., Ben-Artzi, A., Bercovici, H., Böttcher, A., Clancey, K., Coburn, L. A., Curto, R. E., Davidson, K. R., Douglas, R. G., Dijksma, A., Dym, H., Fuhrmann, P. A., Gramsch, B., Helton, J. A., Kaashoek, M. A., and Kaper, H. G.
- Abstract
Throughout this chapter, the field $$ \mathbb{K} $$ will always be the real field ℝ; we consider a real Banach space U, an open interval ℭ ⊂ ∝, a neighborhood $$ \mathcal{U} $$ of 0 ∈ U, an integer number r ≥ 0, a family $$ \mathfrak{L} $$∈Cr(Ω,$$ \mathcal{L} $$(U)), and a nonlinear map $$ \mathfrak{N} $$∈ C(Ω × $$ \mathcal{U} $$, U) satisfying the following conditions: (AL)$$ \mathfrak{L} $$(λ) ™ IU∈ K(U) for every λ ∈ Ω, i.e., $$ \mathfrak{L} $$(λ) is a compact perturbation of the identity map. (AN)$$ \mathfrak{N} $$ is compact, i.e., the image by $$ \mathfrak{N} $$ of any bounded set of Ω × $$ \mathcal{U} $$ is relatively compact in U. Also, for every compact K ⊂ Ω, $$ \mathop {\lim }\limits_{u \to 0} \mathop {\sup }\limits_{\lambda \in K} \frac{{\left\
{\mathfrak{N}\left( {\lambda ,u} \right)} \right\ }} {{\left\ u \right\ }} = 0. $$. From now on, we consider the operator $$ \mathfrak{F} \in \mathcal{C}\left( {\Omega \times \mathcal{U},U} \right) $$ defined as 12.1$$ \mathfrak{F}\left( {\lambda ,u} \right): = \mathfrak{L}\left( \lambda \right)u + \mathfrak{N}\left( {\lambda ,u} \right), $$ and the associated equation 12.2$$ \begin{array}{*{20}c} {\mathfrak{F}\left( {\lambda ,u} \right) = 0,} & {\left( {\lambda ,u} \right) \in \Omega } \\ \end{array} \times \mathcal{U}. $$ By Assumptions (AL) and (AN), it is apparent that $$ \begin{array}{*{20}c} {\mathfrak{F}\left( {\lambda ,u} \right) = 0,} & {D_u \mathfrak{F}\left( {\lambda ,u} \right) = \mathfrak{L}\left( \lambda \right),} & \lambda \\ \end{array} \in \Omega , $$ and, hence, (12.2) can be thought of as a nonlinear perturbation around (λ, 0) of the linear equation 12.3$$ \begin{array}{*{20}c} {\mathfrak{L}\left( \lambda \right)u = 0,} & {\lambda \in \Omega ,} & u \\ \end{array} \in U. $$ Equation (12.2) can be expressed as a fixed-point equation for a compact operator. Indeed, $$ \mathfrak{F}\left( {\lambda ,u} \right) $$ = 0 if and only if $$ u = \left[ {I_U - \mathfrak{L}\left( \lambda \right)} \right]u - \mathfrak{N}\left( {\lambda ,u} \right). $$. [ABSTRACT FROM AUTHOR] - Published
- 2007
- Full Text
- View/download PDF