1. Enhancement of anaerobic batch digestion of spineless cacti (Opuntia ficus indica) feedstock by aerobic pre-treatment
- Author
-
Anthony Manoni Mshandete, Samuel Imathiu, and Hawa Myovela
- Subjects
0106 biological sciences ,chemistry.chemical_classification ,Chemistry ,Biomass ,01 natural sciences ,Applied Microbiology and Biotechnology ,Methane ,Reducing sugar ,Anaerobic digestion ,chemistry.chemical_compound ,Biogas ,Bioenergy ,010608 biotechnology ,Genetics ,Bioreactor ,Food science ,Agronomy and Crop Science ,Molecular Biology ,Anaerobic exercise ,010606 plant biology & botany ,Biotechnology - Abstract
One of the best options for African countries to meet rural energy needs is to grow care-free crassulacean acid metabolism plants on a massive scale in waste lands. This can enable bioenergy production without disrupting food supplies and hence sustainable energy supply for the future. Opuntia ficus indica is an ideal plant for arid regimes but has barely been studied as a potential bioenergy source. This study investigated the effect of aerobic pretreatment on methane yield of O. ficus indica biomass. This effect was investigated in batch bioreactors which were exposed to aerobic conditions by varying time from 3 to 72 h before the start of anaerobic digestion. Reducing sugar content and dissolved oxygen levels after pretreatment period was analyzed. Reducing sugar content in bioreactors increased with increase in pretreatment time from 12.22 ±0.69 to 59.08 ± 5.35 g/L in the untreated and 72 h pretreated batches, respectively. Methane yields after pretreatment were observed to range from 0.286 to 0.702 L/kg volatile solids at 9 and 72 h of pre-treatment, respectively. A 9 h pre-treatment of feedstock prior to anaerobic digestion yielded 123% higher methane yield when compared to that without pre-treatment. The findings that there was an increase in reducing sugar production and methane yield at 9 h of aerobic pre-treatment suggests that there was increased hydrolysis with pretreatment. Hence, short pre-treatment period could be an option to increasing solubilization of cladodes and promoting methane productivity. Therefore, pre-aeration of O. ficus indica, was shown to be an effective method for enhancing both its digestibility and improved methane yield during anaerobic digestion. Key words: Anaerobic digestion, biogas, methane, Opuntia, pretreatment, spineless cacti.
- Published
- 2019
- Full Text
- View/download PDF