1. Gaseous and Carbonaceous Composition of PM2.5 Emitted from Rural Vehicles in China
- Author
-
Wei Zhang, Zhiliang Yao, Xuewei Hao, Hui Wu, Xianbao Shen, and Xinyue Cao
- Subjects
Diesel fuel ,010504 meteorology & atmospheric sciences ,Portable emissions measurement system ,Environmental chemistry ,Environmental Chemistry ,Environmental science ,Composition (visual arts) ,010501 environmental sciences ,Particulates ,01 natural sciences ,Pollution ,NOx ,0105 earth and related environmental sciences - Abstract
Rural vehicles (RVs) could contribute significantly to on-road vehicle emissions, especially PM2.5 and NOx; This study tested 10 three-wheeled (3-W) RVs and 8 four-wheeled (4-W) RVs on real roads in Hebei Province using a portable emissions measurement system to investigate gaseous concentrations (CO, NOx, and HC) and the carbonaceous composition (EC and OC) of the PM2.5 emitted. The results showed that the tightening emission standards resulted in the CO, HC, and PM2.5 emissions for China II RVs decreasing, but may increasing NOx emission for China II 3-W RVs. The emission level of PM2.5 for China II RVs is between Euro II LDDTs and Euro III LDDTs. The emission factors (EFs) of OC and EC for 3-W RVs were 0.035 ± 0.019 and 0.058 ± 0.055 g km-1, respectively, and for 4-W RVs, they were 0.046 ± 0.018 and 0.031 ± 0.024 g km-1, respectively. The carbonaceous component represents the main fraction of PM2.5 emitted from RVs (84.6% and 87.2% for 3-W and 4-W RVs, respectively), similar to other diesel vehicles. The average distance-based EFs of OC increased with increasing vehicle size (3-W RVs < 4-W RVs). The CO2-based EFs of OC and EC decreased with increasing vehicle mass, consistent with the emission laws of light-, medium-, and heavy-duty diesel trucks. Driving cycles that included more cruise mode and less creep mode resulted in a higher average EC/OC ratio (1.57) for 3-W RVs than for 4-W RVs (0.63), and resulted in the average EC/OC ratios for both types of RV were lower than for highway LDDTs.
- Published
- 2018
- Full Text
- View/download PDF