1. Factors Influencing Cavitation Erosion of NiCrSiB Hardfacings Deposited by Oxy-Acetylene Powder Welding on Grey Cast Iron
- Author
-
Mariusz Walczak, Tadeusz Hejwowski, and Mirosław Szala
- Subjects
Technology ,Materials science ,hardfacing ,Manufactures ,Welding ,engineering.material ,Environmental technology. Sanitary engineering ,TS1-2301 ,law.invention ,cavitation erosion ,chemistry.chemical_compound ,powder welding ,law ,surface engineering ,TJ1-1570 ,Mechanical engineering and machinery ,stainless steel ,TD1-1066 ,Metallurgy ,General Medicine ,Engineering (General). Civil engineering (General) ,hardness ,cast iron ,Acetylene ,chemistry ,surface roughness ,engineering ,Cast iron ,Cavitation erosion ,TA1-2040 - Abstract
The work presents the results of a study on cavitation erosion (CE) resistance of two NiCrSiB self-fluxing powders deposited by oxy-acetylene powder welding on cast iron substrate grade EN-GJL-200. The mean hardness of deposits A-NiCrSiB, C-NiCrSiB is equal to 908 HV, 399 HV and exceeds those of EN-GJL-200 and X5CrNi18-10 reference specimens 197 HV and 209 HV, respectively. To study CE, the vibratory apparatus has been used and tests were conducted according to the ASTM G32 standard. Cavitation eroded surfaces were examined using a profilometer, optical and scanning electron microscopy. The research indicated that the CE resistance, expressed by the cumulative mass loss decreased in the following order C-NiCrSiB > A-NiCrSiB > X5CrNi18-10 > EN-GJL-200. Therefore, hardfacings were characterised by lower cumulative mass loss, in turn, higher CE resistance than the reference sample and therefore they may be applied as layers to increase resistance to cavitation of cast iron machine components. Results indicate that in the case of multiphase materials, hardness cannot be the main indicator for CE damage prediction while it strongly depends on the initial material microstructure. To qualitatively estimate the cavitation erosion damage (CEd) of NiCrSiB self-fluxing alloys at a specific test time, the following factors should be considered: material microstructure, physical and mechanical properties as well as surface morphology and material loss both estimated at specific exposure time. A general formula for the CEd prediction of NiCrSiB deposits was proposed.
- Published
- 2021