6 results on '"Surucu, M."'
Search Results
2. First-Year Experience of Stereotactic Body Radiation Therapy/Intensity Modulated Radiation Therapy Treatment Using a Novel Biology-Guided Radiation Therapy Machine.
- Author
-
Shi M, Simiele E, Han B, Pham D, Palomares P, Aguirre M, Gensheimer M, Vitzthum L, Le QT, Surucu M, and Kovalchuk N
- Abstract
Purpose: The aim of this study was to present the first-year experience of treating patients using intensity modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT) with a biology-guided radiation therapy machine, the RefleXion X1 system, installed in a clinical setting., Methods and Materials: A total of 78 patients were treated on the X1 system using IMRT and SBRT from May 2021 to May 2022. Clinical and technical data including treatment sites, number of pretreatment kilovoltage computed tomography (kVCT) scans, beam-on time, patient setup time, and imaging time were collected and analyzed. Machine quality assurance (QA) results, machine performance, and user satisfactory survey were also collected and reported., Results: The most commonly treated site was the head and neck (63%), followed by the pelvis (23%), abdomen (8%), and thorax (6%). Except for 5 patients (6%) who received SBRT treatments for bony metastases in the pelvis, all treatments were conventionally fractionated IMRT. The number of kVCT scans per fraction was 1.2 ± 0.5 (mean ± standard deviation). The beam-on time was 9.2 ± 3.5 minutes. The patient setup time and imaging time per kVCT was 4.8 ± 2.6 minutes and 4.6 ± 1.5 minutes, respectively. The daily machine output deviation was 0.4 ± 1.2% from the baseline. The patient QA had a passing rate of 97.4 ± 2.8% at 3%/2 mm gamma criteria. The machine uptime was 92% of the total treatment time. The daily QA and kVCT image quality received the highest level of satisfaction. The treatment workflow for therapists received the lowest level of satisfaction., Conclusions: One year after the installation, 78 patients were successfully treated with the X1 system using IMRT and/or SBRT. With the recent Food and Drug Administration clearance of biology-guided radiation therapy, our department is preparing to treat patients using positron emission tomography-guidance via a new product release, which will address deficiencies in the current image-guided radiation therapy workflow., Competing Interests: Nataliya Kovalchuk reports a relationship with RefleXion Medical that includes funding grants., (© 2023 The Authors.)
- Published
- 2023
- Full Text
- View/download PDF
3. Mitigation of Intensity Modulated Radiation Therapy and Stereotactic Body Radiation Therapy Treatment Planning Errors on the Novel RefleXion X1 System Using Failure Mode and Effect Analysis Within Six Sigma Framework.
- Author
-
Simiele E, Han B, Skinner L, Pham D, Lewis J, Gensheimer M, Vitzthum L, Chang D, Surucu M, and Kovalchuk N
- Abstract
Purpose: The aim of this study was to apply the Six Sigma methodology and failure mode and effect analysis (FMEA) to mitigate errors in intensity modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT) treatment planning with the first clinical installation of RefleXion X1., Methods and Materials: The Six Sigma approach consisted of 5 phases: define, measure, analyze, improve, and control . The define, measure, and analyze phases consisted of process mapping and an FMEA of IMRT and SBRT treatment planning on the X1. The multidisciplinary team outlined the workflow process and identified and ranked the failure modes associated with the plan check items using the American Association of Physicists in Medicine Task Group 100 recommendations. Items with the highest average risk priority numbers (RPNs) and severity ≥ 7 were prioritized for automation using the Eclipse Scripting Application Programming Interface (ESAPI). The "improve" phase consisted of developing ESAPI scripts before the clinical launch of X1 to improve efficiency and safety. In the "control" phase, the FMEA ranking was re-evaluated 1 year after clinical launch., Results: Overall, 100 plan check items were identified in which the RPN values ranged from 10.2 to 429.0. Fifty of these items (50%) were suitable for automation within ESAPI. Of the 10 highest-risk items, 8 were suitable for automation. Based on the results of the FMEA, 2 scripts were developed: Planning Assistant, used by the planner during preparation for planning, and Automated Plan Check, used by the planner and the plan checker during plan preparation for treatment. After 12 months of clinical use of the X1 and developed scripts, only 3 errors were reported. The average prescript RPN was 138.0, compared with the average postscript RPN of 47.8 ( P < .05), signifying a safer process., Conclusions: Implementing new technology in the clinic can be an error-prone process in which the likelihood of errors increases with increasing pressure to implement the technology quickly. To limit errors in clinical implementation of the novel RefleXion X1 system, the Six Sigma method was used to identify failure modes, establish quality control checks, and re-evaluate these checks 1 year after clinical implementation., (© 2023 The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
4. Characterization of Markerless Tumor Tracking Using the On-Board Imager of a Commercial Linear Accelerator Equipped With Fast-kV Switching Dual-Energy Imaging.
- Author
-
Roeske JC, Mostafavi H, Haytmyradov M, Wang A, Morf D, Cortesi L, Surucu M, Patel R, Cassetta R, Zhu L, Lehmann M, and Harkenrider MM
- Abstract
Purpose: To describe and characterize fast-kV switching, dual-energy (DE) imaging implemented within the on-board imager of a commercial linear accelerator for markerless tumor tracking (MTT)., Methods and Materials: Fast-kV switching, DE imaging provides for rapid switching between programmed tube voltages (ie, 60 and 120 kVp) from one image frame to the next. To characterize this system, the weighting factor used for logarithmic subtraction and signal difference-to-noise ratio were analyzed as a function of time and frame rate. MTT was evaluated using a thorax motion phantom and fast kV, DE imaging was compared versus single energy (SE) imaging over 360 degrees of rotation. A template-based matching algorithm was used to track target motion on both DE and SE sequences. Receiver operating characteristics were used to compare tracking results for both modalities., Results: The weighting factor was inversely related to frame rate and stable over time. After applying the frame rate-dependent weighting factor, the signal difference-to-noise ratio was consistent across all frame rates considered for simulated tumors ranging from 5 to 25 mm in diameter. An analysis of receiver operating characteristics curves showed improved tracking with DE versus SE imaging. The area under the curve for the 10-mm target ranged from 0.821 to 0.858 for SE imaging versus 0.968 to 0.974 for DE imaging. Moreover, the residual tracking errors for the same target size ranged from 2.02 to 2.18 mm versus 0.79 to 1.07 mm for SE and DE imaging, respectively., Conclusions: Fast-kV switching, DE imaging was implemented on the on-board imager of a commercial linear accelerator. DE imaging resulted in improved MTT accuracy over SE imaging. Such an approach may have application for MTT of patients with lung cancer receiving stereotactic body radiation therapy, particularly for small tumors where MTT with SE imaging may fail., (© 2020 The Authors.)
- Published
- 2020
- Full Text
- View/download PDF
5. The Impact of Transitioning to Prospective Contouring and Planning Rounds as Peer Review.
- Author
-
Surucu M, Bajaj A, Roeske JC, Block AM, Price J, Small W Jr, and Solanki AA
- Abstract
Purpose: Our peer-review program previously consisted of weekly chart rounds performed before the end of the first week of treatment. In order to perform peer review before the start of treatment when possible, we implemented daily prospective contouring and planning rounds (CPR)., Methods and Materials: At the time of computed tomography simulation, patients were categorized by the treating physician into 5 treatment groups based on urgency and complexity (ie, standard, urgent, palliative nonemergent, emergent, and special procedures). A scoring system was developed to record the outcome of case presentations, and the results of the CPR case presentations were compared with the time period 2.5 years before CPR implementation, for which peer review was performed retrospectively., Results: CPR was implemented on October 1, 2015, and a total of 4759 patients presented for care through May 31, 2018. The majority were in the standard care path (n = 3154; 66.3%). Among the remainder of the charts, 358 (7.5%), 430 (9.0%), and 179 (3.8%) cases were in the urgent, nonemergent palliative, and emergent care paths, respectively. The remaining patients were in the special procedures group, representing brachytherapy and stereotactic radiosurgery. A total of 125 patients (2.6%) required major changes and were re-presented after the suggested modifications, 102 patients (2.1%) had minor recommendations that did not require a repeat presentation, and 247 cases (5.2%) had minor documentation-related recommendations that did not require editing of the contours. In the 2.5 years before the implementation, records of a total of 1623 patients were reviewed, and only 9 patients (0.6%) had minor recommendation for change. The remainder was noted as complete agreement., Conclusions: Contouring and planning rounds were successfully implemented at our clinic. Pretreatment and, most often, preplanning review of contours and directives allows for a more detailed review and changes to be made early on in the treatment planning process. When compared with historical case presentations, the CPR method made our peer review more thorough and improved standardization.
- Published
- 2019
- Full Text
- View/download PDF
6. Transitioning From a Low-Dose-Rate to a High-Dose-Rate Prostate Brachytherapy Program: Comparing Initial Dosimetry and Improving Workflow Efficiency Through Targeted Interventions.
- Author
-
Solanki AA, Mysz ML, Patel R, Surucu M, Kang H, Plypoo A, Bajaj A, Korpics M, Martin B, Hentz C, Gupta G, Farooq A, Baldea KG, Pawlowski J, Roeske J, Flanigan R, Small W, and Harkenrider MM
- Abstract
Purpose: We transitioned from a low-dose-rate (LDR) to a high-dose-rate (HDR) prostate brachytherapy program. The objective of this study was to describe our experience developing a prostate HDR program, compare the LDR and HDR dosimetry, and identify the impact of several targeted interventions in the HDR workflow to improve efficiency., Methods and Materials: We performed a retrospective cohort study of patients treated with LDR or HDR prostate brachytherapy. We used iodine-125 seeds (145 Gy as monotherapy, and 110 Gy as a boost) and preoperative planning for LDR. For HDR, we used iridium-192 (13.5 Gy × 2 as monotherapy and 15 Gy × 1 as a boost) and computed tomography-based planning. Over the first 18 months, we implemented several targeted interventions into our HDR workflow to improve efficiency. To evaluate the progress of the HDR program, we used linear mixed-effects models to compare LDR and HDR dosimetry and identify changes in the implant procedure and treatment planning durations over time., Results: The study cohort consisted of 122 patients (51 who received LDR and 71 HDR). The mean D90 was similar between patients who received LDR and HDR ( P = .28). HDR mean V100 and V95 were higher ( P < .0001), but mean V200 and V150 were lower ( P < .0001). HDR rectum V100 and D1cc were lower ( P < .0001). The HDR mean for the implant procedure duration was shorter (54 vs 60 minutes; P = .02). The HDR mean for the treatment planning duration dramatically improved with the implementation of targeted workflow interventions (3.7 hours for the first quartile to 2.0 hours for the final quartile; P < .0001)., Conclusions: We successfully developed a prostate HDR brachytherapy program at our institution with comparable dosimetry to our historic LDR patients. We identified several targeted interventions that improved the efficiency of treatment planning. Our experience and workflow interventions may help other institutions develop similar HDR programs.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.