1. A determinant formula for a holonomic q-difference system associated with Jackson integrals of type BCn
- Author
-
Kazuhiko Aomoto and Masahiko Ito
- Subjects
Pure mathematics ,Basic hypergeometric series ,Recurrence relation ,Vandermonde type determinant ,Holonomic ,General Mathematics ,Jackson integral ,Schur polynomial ,Algebra ,Determinant ,Symmetric polynomial ,Symplectic Schur functions ,Jackson integral of type BCn ,Symplectic geometry ,Mathematics - Abstract
A Jackson integral of type BC n is a multisum generalization of the very-well-poised-balanced ψ 2 r 2 r basic hypergeometric series. We state an explicit product formula for the determinant of a matrix with entries given by the BC n type Jackson integrals. In order to show this, we treat the determinant as a solution of a holonomic q-difference equation. In particular we give the q-difference equation explicitly as a two-term recurrence relation, which the determinant satisfies, by introducing a set of new symmetric polynomials via the symplectic Schur functions.
- Published
- 2009
- Full Text
- View/download PDF