1. Existence and nonexistence of extremal functions for sharp Trudinger-Moser inequalities
- Author
-
Lu Zhang, Guozhen Lu, and Nguyen Lam
- Subjects
Pure mathematics ,Inequality ,General Mathematics ,media_common.quotation_subject ,010102 general mathematics ,Mathematics::Analysis of PDEs ,Function (mathematics) ,Type (model theory) ,Space (mathematics) ,01 natural sciences ,Infimum and supremum ,Symmetry (physics) ,0103 physical sciences ,010307 mathematical physics ,0101 mathematics ,Mathematics ,media_common - Abstract
Our main purpose in this paper is to establish the existence and nonexistence of extremal functions (also known as maximizers) and symmetry of extremals for several Trudinger-Moser type inequalities on the entire space R n , including both the critical and subcritical Trudinger-Moser inequalities (see Theorems 1.1, 1.2, 1.3, 1.4, 1.5). Most of earlier works on existence of maximizers in the literature rely on the complicated blow-up analysis of PDEs for the associated Euler-Lagrange equations of the corresponding Moser functionals. The new approaches developed in this paper are using the identities and relationship between the supremums of the subcritical Trudinger-Moser inequalities and the critical ones established by the same authors in [25] , combining with the continuity of the supremum function that is observed for the first time in the literature. These allow us to establish the existence and nonexistence of the maximizers for the Trudinger-Moser inequalities in different ranges of the parameters (including those inequalities with the exact growth). This method is considerably simpler and also allows us to study the symmetry problem of the extremal functions and prove that the extremal functions for the subcritical singular Truddinger-Moser inequalities are symmetric. Moreover, we will be able to calculate the exact values of the supremums of the Trudinger-Moser type in certain cases. These appear to be the first results in this direction.
- Published
- 2019