Ximeng Qi, Qian Lei, Zilong Peng, Xiaoyang Zhu, Xu Quan, Jianjun Yang, Hongke Li, Jiankang He, Nairui Gou, Liu Mingyang, Hongbo Lan, Yuan-Fang Zhang, Dichen Li, and Zhenghao Li
Flexible transparent electrodes (FTEs) with an embedded metal mesh are considered a promising alternative to traditional indium tin oxide (ITO) due to their excellent photoelectric performance, surface roughness, and mechanical and environmental stability. However, great challenges remain for achieving simple, cost-effective, and environmentally friendly manufacturing of high-performance FTEs with embedded metal mesh. Herein, a maskless, templateless, and plating-free fabrication technique is proposed for FTEs with embedded silver mesh by combining an electric-field-driven (EFD) microscale 3D printing technique and a newly developed hybrid hot-embossing process. The final fabricated FTE exhibits superior optoelectronic properties with a transmittance of 85.79%, a sheet resistance of 0.75 Ω sq-1 , a smooth surface of silver mesh (Ra ≈ 18.8 nm) without any polishing treatment, and remarkable mechanical stability and environmental adaptability with a negligible increase in sheet resistance under diverse cyclic tests and harsh working conditions (1000 bending cycles, 80 adhesion tests, 120 scratch tests, 100 min ultrasonic test, and 72 h chemical attack). The practical viability of this FTE is successfully demonstrated with a flexible transparent heater applied to deicing. The technique proposed offers a promising fabrication strategy with a cost-effective and environmentally friendly process for high-performance FTE.