1. NanoIEA: A Nanopatterned Interdigitated Electrode Array-Based Impedance Assay for Real-Time Measurement of Aligned Endothelial Cell Barrier Functions.
- Author
-
Choi JS, Doo HM, Kim B, Lee SH, Sung SK, Go G, Suarez A, Kim Y, Weon BM, Choi BO, Kim HJ, and Kim DH
- Subjects
- Humans, Electric Impedance, Endothelium, Levodopa metabolism, Levodopa pharmacology, Endothelial Cells, Fluorocarbon Polymers
- Abstract
A nanopatterned interdigitated electrode array (nanoIEA)-based impedance assay is developed for quantitative real-time measurement of aligned endothelial cell (EC) barrier functions in vitro. A bioinspired poly(3,4-dihydroxy-L-phenylalanine) (poly (l-DOPA)) coating is applied to improve the human brain EC adhesion onto the Nafion nanopatterned surfaces. It is found that a poly (l-DOPA)-coated Nafion grooved nanopattern makes the human brain ECs orient along the nanopattern direction. Aligned human brain ECs on Nafion nanopatterns exhibit increased expression of genes encoding tight and adherens junction proteins. Aligned human brain ECs also have enhanced impedance and resistance versus unaligned ones. Treatment with a glycogen synthase kinase-3 inhibitor (GSK3i) further increases impedance and resistance, suggesting synergistic effects occur on the cell-cell tightness of in vitro human brain ECs via a combination of anisotropic matrix nanotopography and GSK3i treatment. It is found that this enhanced cell-cell tightness of the combined approach is accompanied by increased expression of claudin protein. These data demonstrate that the proposed nanoIEA assay integrated with poly (l-DOPA)-coated Nafion nanopatterns and interdigitated electrode arrays can make not only biomimetic aligned ECs, but also enable real-time measurement of the enhanced barrier functions of aligned ECs via tighter cell-cell junctions., (© 2023 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF