1. Nψ,ϕ-type Quotient Modules over the Bidisk
- Author
-
Chang Hui Wu and Tao Yu
- Subjects
Pure mathematics ,Applied Mathematics ,General Mathematics ,010102 general mathematics ,Essential spectrum ,Hardy space ,Characterization (mathematics) ,Type (model theory) ,01 natural sciences ,symbols.namesake ,Compact space ,Compression (functional analysis) ,0103 physical sciences ,Quotient module ,symbols ,010307 mathematical physics ,0101 mathematics ,Quotient ,Mathematics - Abstract
Let H2(ⅅ2) be the Hardy space over the bidisk ⅅ2, and let Mψ,ϕ = [(ψ(z) − ϕ(w))2] be the submodule generated by (ψ(z) − ϕ(w))2, where ψ(z) and ϕ(w) are nonconstant inner functions. The related quotient module is denoted by Nψ,ϕ = H2(ⅅ2) ⊖ Mψ,ϕ. In this paper, we give a complete characterization for the essential normality of Nψ,ϕ. In particular, if ψ(z)= z, we simply write Mψ,ϕ and Nψ,ϕ as Mϕ and Nϕ respectively. This paper also studies compactness of evaluation operators L(0)∣nϕ and R(0)ϕnϕ, essential spectrum of compression operator Sz on Nϕ, essential normality of compression operators Sz and Sw on Nϕ.
- Published
- 2020