1. Biogenic Synthesis of Zinc Oxide Nanoparticles Mediated by the Extract of Terminalia catappa Fruit Pericarp and Its Multifaceted Applications.
- Author
-
Fernandes CA, Jesudoss M N, Nizam A, Krishna SBN, and Lakshmaiah VV
- Abstract
Zinc oxide nanoparticles (ZnO-NPs) were biosynthesized by using the pericarp aqueous extract from Terminalia catappa Linn. These NPs were characterized using various analytical techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet (UV) spectroscopy, dynamic light scattering (DLS), and scanning electron microscopy (SEM), and XRD studies of the nanoparticles reported mean size as 12.58 nm nanocrystals with highest purity. Further SEM analysis emphasized the nanoparticles to be spherical in shape. The functional groups responsible for capping and stabilizing the NPs were identified with FTIR studies. DLS studies of the synthesized NPs reported ζ potential as -10.1 mV and exhibited stable colloidal solution. These characterized ZnO-NPs were evaluated for various biological applications such as antibacterial, antifungal, antioxidant, genotoxic, biocompatibility, and larvicidal studies. To explore its multidimensional application in the field of medicine. NPs reported a potential antimicrobial activity at a concentration of 200 μg/mL against bacterial strains in the decreasing order of Streptococcus pyogenes > Streptococcus aureus > Streptococcus typhi > Streptococcus aeruginosa and against the fungi Candida albicans . In vitro studies of RBC hemolysis with varying concentrations of NPs confirm their biocompatibility with IC
50 value of 211.4 μg/mL. The synthesized NPs' DPPH free radical scavenging activity was examined to extend their antioxidant applications. The antiproliferation and genetic toxicity were studied with meristematic cells of Allium cepa reported with mitotic index (MI index) of 1.2% at the concentration of 1000 μg/mL. NPs exhibited excellent Larvicidal activity against Culex quinquefasciatus larvae with the highest mortality rate as 98% at 4 mg/L. Our findings elicit the therapeutic potentials of the synthesized zinc oxide NPs., Competing Interests: The authors declare no competing financial interest., (© 2023 The Authors. Published by American Chemical Society.)- Published
- 2023
- Full Text
- View/download PDF