1. Mn-Doped Quinary Ag–In–Ga–Zn–S Quantum Dots for Dual-Modal Imaging
- Author
-
Raphaël Schneider, Bolat Uralbekov, Perizat Galiyeva, Jordane Jasniewski, Halima Alem, Sébastien Leclerc, Sébastien Blanchard, Hervé Rinnert, Ghouti Medjahdi, Sabine Bouguet-Bonnet, Lavinia Balan, Laboratoire Réactions et Génie des Procédés (LRGP), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Cristallographie, Résonance Magnétique et Modélisations (CRM2), Laboratoire Énergies et Mécanique Théorique et Appliquée (LEMTA ), Conditions Extrêmes et Matériaux : Haute Température et Irradiation (CEMHTI), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université d'Orléans (UO), Institut Parisien de Chimie Moléculaire (IPCM), Chimie Moléculaire de Paris Centre (FR 2769), Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Ingénierie des Biomolécules (LIBio), Université de Lorraine (UL), Al-Farabi Kazakh National University [Almaty] (KazNU), IMPACT Biomolécules, and ANR-15-IDEX-0004,LUE,Isite LUE(2015)
- Subjects
Materials science ,General Chemical Engineering ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Article ,[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] ,Condensed Matter::Materials Science ,Semiconductor quantum dots ,Transition metal ,Condensed Matter::Superconductivity ,Mn doped ,QD1-999 ,business.industry ,Doping ,Quinary ,General Chemistry ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Dual (category theory) ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Chemistry ,Modal ,Quantum dot ,Optoelectronics ,Condensed Matter::Strongly Correlated Electrons ,0210 nano-technology ,business - Abstract
International audience; Doping of transition metals within a semiconductor quantum dot (QD) has a high impact on the optical and magnetic properties of the QD. In this study, we report the synthesis of Mn 2+-doped Ag−In−Ga−Zn−S (Mn:AIGZS) QDs via thermolysis of a dithiocarbamate complex of Ag + , In 3+ , Ga 3+ , and Zn 2+ and of Mn(stearate) 2 in oleylamine. The influence of the Mn 2+ loading on the photoluminescence (PL) and magnetic properties of the dots are investigated. Mn:AIGZS QDs exhibit a diameter of ca. 2 nm, a high PL quantum yield (up to 41.3% for a 2.5% doping in Mn 2+), and robust photo-and colloidal stabilities. The optical properties of Mn:AIGZS QDs are preserved upon transfer into water using the glutathione tetramethylammonium ligand. At the same time, Mn:AIGZS QDs exhibit high relaxivity (r 1 = 0.15 mM −1 s −1 and r 2 = 0.57 mM −1 s −1 at 298 K and 2.34 T), which shows their potential applicability for bimodal PL/magnetic resonance imaging (MRI) probes.
- Published
- 2021
- Full Text
- View/download PDF