1. Effect of film thickness on the phase behaviors of diblock copolymer thin film
- Author
-
Sekyung Lee, Hae Woong Park, Jueun Jung, Taihyun Chang, Kazuyuki Matsunaga, Hiroshi Jinnai, and Hyojoon Lee
- Subjects
Phase transition ,Materials science ,Annealing (metallurgy) ,Macromolecular Substances ,Surface Properties ,Molecular Conformation ,General Physics and Astronomy ,Phase Transition ,Hemiterpenes ,Hardness ,Pentanes ,Materials Testing ,Butadienes ,General Materials Science ,Lamellar structure ,Composite material ,Thin film ,Particle Size ,Phase diagram ,General Engineering ,Membranes, Artificial ,Atmospheric temperature range ,Nanostructures ,Crystallography ,Transmission electron microscopy ,Polystyrenes ,Gyroid - Abstract
A phase diagram was constructed for a polystyrene-block-polyisoprene (PS-b-PI, M(W) = 32 700, f(PI) = 0.670) in thin films on Si wafer as a function of film thickness over the range of 150-2410 nm (7-107L(0) (L(0): domain spacing)). The PS-b-PI exhibits a variety of ordered phases from hexagonally perforated lamellar (HPL) via double gyroid (DG) to hexagonally packed cylinder (HEX) before going to the disordered (DIS) phase upon heating. The morphology of the PS-b-PI in thin film was investigated by grazing incidence small-angle X-ray scattering, transmission electron microscopy, and transmission electron microtomography. In thin film, the phase transition temperature is difficult to be determined unequivocally with in situ heating processes since the phase transition is slow and two phases coexist over a wide temperature range. Therefore, in an effort to find an "equilibrium" phase, we determined the long-term stable phase formed after cooling the film from the DIS phase to a target temperature and annealing for 24 h at the temperature. The temperature windows of stable ordered phases are strongly influenced by the film thickness. As the film thickness decreases, the temperature window of layer-like structures such as HPL and HEX becomes wider, whereas that of the DG stable region decreases. For the films thinner than 160 nm (8L(0)), only the HPL phase was found. In the films exhibiting DG phase, a perforated layer structure at the free surface was found, which gradually converts to the internal DG structure. The relief of interfacial tension by preferential wetting appears to play an important role in controlling the morphology in very thin films.
- Published
- 2010