1. Distance Dependence of Single-Fluorophore Quenching by Gold Nanoparticles Studied on DNA Origami
- Author
-
Philip Tinnefeld, Ingo H. Stein, Guillermo P. Acuna, Tim Liedl, M. Bucher, Anton Kuzyk, Robert D. Schreiber, Friedrich C. Simmel, Fernando D. Stefani, Christian Steinhauer, Phil Holzmeister, and Alexander Moroz
- Subjects
Optics and Photonics ,Fluorescence-lifetime imaging microscopy ,Fluorophore ,Materials science ,NANOPARTICLE ,Metal Nanoparticles ,General Physics and Astronomy ,Nanoparticle ,Nanotechnology ,INGENIERÍAS Y TECNOLOGÍAS ,02 engineering and technology ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,DNA ORIGAMI ,chemistry.chemical_compound ,DNA nanotechnology ,DNA origami ,General Materials Science ,Otras Nanotecnología ,FLUORESCENCE ,Fluorescent Dyes ,Nanotecnología ,Quenching (fluorescence) ,business.industry ,General Engineering ,DNA ,021001 nanoscience & nanotechnology ,Single-molecule experiment ,Fluorescence ,0104 chemical sciences ,PLASMONICS ,Spectrometry, Fluorescence ,chemistry ,Optoelectronics ,Gold ,0210 nano-technology ,business - Abstract
We study the distance-dependent quenching of fluorescence due to a metallic nanoparticle in proximity of a fluorophore. In our single-molecule measurements, we achieve excellent control over structure and stoichiometry by using self-assembled DNA structures (DNA origami) as a breadboard where both the fluorophore and the 10 nm metallic nanoparticle are positioned with nanometer precision. The single-molecule spectroscopy method employed here reports on the co-localization of particle and dye, while fluorescence lifetime imaging is used to directly obtain the correlation of intensity and fluorescence lifetime for varying particle to dye distances. Our data can be well explained by exact calculations that include dipole dipole orientation and distances. Fitting with a more practical model for nanosurface energy transfer yields 10.4 nm as the characteristic distance of 50% energy transfer. The use of DNA nanotechnology together with minimal sample usage by attaching the particles to the DNA origami directly on the microscope coverslip paves the way for more complex experiments exploiting dye nanoparticle interactions. Fil: Acuna, Guillermo P.. Technische Universität Braunschweig; Alemania Fil: Bucher, Martina. Ludwig Maximilians Universitat; Alemania Fil: Stein, Ingo H.. Ludwig Maximilians Universitat; Alemania Fil: Steinhauer, Christian. Ludwig Maximilians Universitat; Alemania Fil: Kuzyk, Anton. Technische Universitat Munchen; Alemania Fil: Holzmeister, Phil. Technische Universität Braunschweig; Alemania Fil: Schreiber, Robert. Ludwig Maximilians Universitat; Alemania Fil: Moroz, Alexander. Fil: Stefani, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Liedl, Tim. Ludwig Maximilians Universitat; Alemania Fil: Simmel, Friedrich C.. Technische Universitat Munchen; Alemania Fil: Tinnefeld, Philip. Technische Universität Braunschweig; Alemania
- Published
- 2012
- Full Text
- View/download PDF