1. The Optimization of Bioorthogonal Epitope Ligation within MHC-I Complexes.
- Author
-
Pawlak JB, Hos BJ, van de Graaff MJ, Megantari OA, Meeuwenoord N, Overkleeft HS, Filippov DV, Ossendorp F, and van Kasteren SI
- Subjects
- Humans, T-Lymphocytes, Cytotoxic immunology, Epitopes chemistry, Histocompatibility Antigens Class I chemistry
- Abstract
Antigen recognition followed by the activation of cytotoxic T-cells (CTLs) is a key step in adaptive immunity, resulting in clearance of viruses and cancers. The repertoire of peptides that have the ability to bind to the major histocompatibility type-I (MHC-I) is enormous, but the approaches available for studying the diversity of the peptide repertoire on a cell are limited. Here, we explore the use of bioorthogonal chemistry to quantify specific peptide-MHC-I complexes (pMHC-I) on cells. We show that modifying epitope peptides with bioorthogonal groups in surface accessible positions allows wild-type-like MHC-I binding and bioorthogonal ligation using fluorogenic chromophores in combination with a Cu(I)-catalyzed Huisgen cycloaddition reaction. We expect that this approach will make a powerful addition to the antigen presentation toolkit as for the first time it allows quantification of antigenic peptides for which no detection tools exist.
- Published
- 2016
- Full Text
- View/download PDF