1. Can Substitutions Affect the Oxidative Stability of Lithium Argyrodite Solid Electrolytes?
- Author
-
Ananya Banik, Yunsheng Liu, Saneyuki Ohno, Yannik Rudel, Alberto Jiménez-Solano, Andrei Gloskovskii, Nella M. Vargas-Barbosa, Yifei Mo, and Wolfgang G. Zeier
- Subjects
ddc:540 ,Materials Chemistry ,Electrochemistry ,Energy Engineering and Power Technology ,Chemical Engineering (miscellaneous) ,Electrical and Electronic Engineering - Abstract
Lithium ion conducting argyrodites are among the most studied solid electrolytes due to their high ionic conductivities. A major concern in a solid-state battery is the solid electrolyte stability. Here we present a systematic study on the influence of cationic and anionic substitution on the electrochemical stability of Li6PS5X, using step-wise cyclic voltammetry, optical band gap measurements, hard X-ray photoelectron spectroscopy along with first-principles calculations. We observe that going from Li6PS5Cl to Li6+xP1-xMxS5I (M = Si4+, Ge4+), the oxidative degradation does not change. Considering the chemical bonding shows that the valence band edges are mostly populated by non-bonding orbitals of the PS43- units or unbound sulfide anions and that simple substitutions in these sulfide-based solid electrolytes cannot improve oxidative stabilities. This work provides insights on the role of chemical bonding on the stability of superionic conductors and shows that alternative strategies are needed for long-term stable solid-state batteries.
- Published
- 2022