1. Beyond the Parts: Learning Coarse-to-Fine Adaptive Alignment Representation for Person Search.
- Author
-
WENXIN HUANG, XUEMEI JIA, XIAN ZHONG, XIAO WANG, KUI JIANG, and ZHENG WANG
- Subjects
JOB hunting ,COMPUTER vision ,IMAGE registration ,LEARNING ,HUMAN body ,PEDESTRIANS - Abstract
Person search is a time-consuming computer vision task that entails locating and recognizing query people in scenic pictures. Body components are commonly mismatched during matching due to position variation, occlusions, and partially absent body parts, resulting in unsatisfactory person search results. Existing approaches for extracting local characteristics of the human body using keypoint information are unable to handle the search job when distinct body parts are misaligned, ignoring to exploit multiple granularities, which is crucial in the person search process. Moreover, the alignment learning methods learn body part features with fixed and equal weights, ignoring the beneficial contextual information, e.g., the umbrella carried by the pedestrian, which supplements compelling clues for identifying the person. In this paper, we propose a Coarse-to-Fine Adaptive Alignment Representation (CFA2R) network for learning multiple granular features in misaligned person search in the coarse-to-fine perspective. To exploit more beneficial body parts and related context of the cropped pedestrians, we design a Part-Attentional Progressive Module (PAPM) to guide the network to focus on informative body parts and positive accessorial regions. Besides, we propose a Re-weighting Alignment Module (RAM) shedding light on more contributive parts instead of treating them equally. Specifically, adaptive re-weighted but not fixed part features are reconstructed by Re-weighting Reconstruction module, considering that different parts serve unequally during image matching. Extensive experiments conducted on CUHK-SYSU and PRW datasets demonstrate competitive performance of our proposed method. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF