1. Structural identification of unate-like genetic network models from time-lapse protein concentration measurements
- Author
-
John Lygeros, Eugenio Cinquemani, Giancarlo Ferrari-Trecate, Riccardo Porreca, Dipartimento di Informatica e Sistemistica (DIS), Università degli Studi di Pavia = University of Pavia (UNIPV), Modeling, simulation, measurement, and control of bacterial regulatory networks (IBIS), Laboratoire Adaptation et pathogénie des micro-organismes [Grenoble] (LAPM), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Jean Roget, Automatic Control Laboratory [Zurich], Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Università degli Studi di Pavia, Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Inria Grenoble - Rhône-Alpes, University of Zurich, and Porreca, Riccardo
- Subjects
2606 Control and Optimization ,0209 industrial biotechnology ,Computer science ,[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] ,Genetic network ,2207 Control and Systems Engineering ,02 engineering and technology ,Machine learning ,computer.software_genre ,[SPI.AUTO]Engineering Sciences [physics]/Automatic ,Data modeling ,03 medical and health sciences ,020901 industrial engineering & automation ,SX00 SystemsX.ch ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,Gene expression ,Gene ,030304 developmental biology ,0303 health sciences ,business.industry ,Ode ,[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology ,[SDV.BBM.MN]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular Networks [q-bio.MN] ,[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,Yeast ,Spline (mathematics) ,ComputingMethodologies_PATTERNRECOGNITION ,570 Life sciences ,biology ,SX16 YeastX ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,Artificial intelligence ,[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,Biological system ,business ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,Protein concentration ,computer ,2611 Modeling and Simulation - Abstract
We consider the problem of learning dynamical models of genetic regulatory networks from time-lapse measurements of gene expression. In our previous work [Porreca et al,Bioinformatics,2010], we described a method for the structural and parametric identification of ODE models that makes use of concurrent measurements of concentrations and synthesis rates of the gene products, and requires the knowledge of the noise statistics. In this paper we assume all these pieces of information are not simultaneously available. In particular we propose extensions of [Porreca et al,Bioinformatics,2010] that make the method applicable to protein concentration measurements only. We discuss the performance of the method on experimental data from the network IRMA, a benchmark synthetic network engineered in yeast Saccharomices cerevisiae.
- Published
- 2010
- Full Text
- View/download PDF