1. No Cloud on the Horizon: Probabilistic Gap Filling in Satellite Image Series
- Author
-
Raphael Fischer, François Petitjean, Katharina Morik, Nico Piatkowski, Geoffrey I Webb, Charlotte Pelletier, Observation de l’environnement par imagerie complexe (OBELIX), SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE (IRISA-D5), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Bretagne Sud (UBS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-CentraleSupélec-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Bretagne Sud (UBS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Faculty of Information Technology [Clayton], Monash University [Clayton], Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), and Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
- Subjects
Random field ,010504 meteorology & atmospheric sciences ,Markov chain ,Computer science ,business.industry ,0211 other engineering and technologies ,Probabilistic logic ,Cloud computing ,02 engineering and technology ,computer.software_genre ,01 natural sciences ,Set (abstract data type) ,Knowledge extraction ,13. Climate action ,[INFO]Computer Science [cs] ,Point (geometry) ,Graphical model ,Data mining ,business ,computer ,ComputingMilieux_MISCELLANEOUS ,021101 geological & geomatics engineering ,0105 earth and related environmental sciences - Abstract
Spatio-temporal data sets such as satellite image series are of utmost importance for understanding global developments like climate change or urbanization. However, incompleteness of data can greatly impact usability and knowledge discovery. In fact, there are many cases where not a single data point in the set is fully observed. For filling gaps, we introduce a novel approach that utilizes Markov random fields (MRFs). We extend the probabilistic framework to also consider empirical prior information, which allows to train even on highly incomplete data. Moreover, we devise a way to make discrete MRFs predict continuous values via state superposition. Experiments on real-world remote sensing imagery suffering from cloud cover show that the proposed approach outperforms state-of-the-art gap filling techniques.
- Published
- 2020
- Full Text
- View/download PDF