101. Numerical implementation of the complex calculation method on the example of the turbine flowing part in TKR-11 turbocharger
- Author
-
Andrey Passar and Denis Timoshenko
- Subjects
complex method of calculation ,degree of radiality ,degree of reactance ,factor of pressure ,turbine characteristics ,flowing part ,Engineering geology. Rock mechanics. Soil mechanics. Underground construction ,TA703-712 - Abstract
The relevance of the research is caused by the necessity to improve a turbine flowing part in turbocharger of the combined internal combustion engine. The main aim of the research is to unite all positive parties of existing mathematical models and methods of calculation and design; to design a complex radially-axial turbine working in conditions of a non-stationary stream of pulse system of pressurization of the combined internal combustion engine. Methods of research: a method of calculation of the turbine on average radius, optimization algorithm of Lagrange uncertain multipliers method, N. Midzumati method, a method of characteristics, a method of the Central research diesel institute. Results. The paper introduces numerical implementation of a complex calculation method on an example of a flowing part of the radially-axial turbine in TKR-11 turbocharger working in structure of the combined engine. The authors compare the turbines, designed by Lagrange uncertain multipliers, with the turbines, designed by the method of N. Midzumati. The paper introduces the characteristics of the turbines in a stationary stream. Based on these characteristics it is shown that the turbines which design was based on N. Midzumati method are a little bit more effective than the turbines designed by the Lagrange multipliers method, but they are behind the latter in the effective power. The paper introduces the characteristics of the turbines in a non-stationary stream of the combined engine. Based on these characteristics it is shown, that the turbines, designed by the method of N. Midzumati, are more effective than the turbines, designed by the Lagrange multipliers method. When operating in the structure of the combined engine, the turbines, designed by the method of N. Midzumati, are behind the turbines, designed by the Lagrange uncertain multipliers method, in the effective power. As a result of numerical implementation of the complex calculation method the authors obtained the geometrical analogue of the turbine flowing part in ТKR-11 turbocharger. When operating in the structure of the complex engine it allows to use effectively non-stationary stream from a piston part and decreasing the specific charge of fuel.
- Published
- 2019