1. Phosphoproteomic analysis of protease-activated receptor-1 biased signaling reveals unique modulators of endothelial barrier function
- Author
-
Lin, Ying, Wozniak, Jacob M, Grimsey, Neil J, Girada, Sravan, Patwardhan, Anand, Molinar-Inglis, Olivia, Smith, Thomas H, Lapek, John D, Gonzalez, David J, and Trejo, JoAnn
- Subjects
Biochemistry and Cell Biology ,Biomedical and Clinical Sciences ,Biological Sciences ,Hematology ,HIV/AIDS ,2.1 Biological and endogenous factors ,Aetiology ,Calmodulin-Binding Proteins ,Carrier Proteins ,Endothelial Cells ,Humans ,Microfilament Proteins ,Phosphorylation ,Protein C Inhibitor ,Proteomics ,Receptor ,PAR-1 ,Signal Transduction ,Thrombin ,actin ,arrestin ,GPCR ,inflammation ,thrombin - Abstract
Thrombin, a procoagulant protease, cleaves and activates protease-activated receptor-1 (PAR1) to promote inflammatory responses and endothelial dysfunction. In contrast, activated protein C (APC), an anticoagulant protease, activates PAR1 through a distinct cleavage site and promotes anti-inflammatory responses, prosurvival, and endothelial barrier stabilization. The distinct tethered ligands formed through cleavage of PAR1 by thrombin versus APC result in unique active receptor conformations that bias PAR1 signaling. Despite progress in understanding PAR1 biased signaling, the proteins and pathways utilized by thrombin versus APC signaling to induce opposing cellular functions are largely unknown. Here, we report the global phosphoproteome induced by thrombin and APC signaling in endothelial cells with the quantification of 11,266 unique phosphopeptides using multiplexed quantitative mass spectrometry. Our results reveal unique dynamic phosphoproteome profiles of thrombin and APC signaling, an enrichment of associated biological functions, including key modulators of endothelial barrier function, regulators of gene transcription, and specific kinases predicted to mediate PAR1 biased signaling. Using small interfering RNA to deplete a subset of phosphorylated proteins not previously linked to thrombin or APC signaling, a function for afadin and adducin-1 actin binding proteins in thrombin-induced endothelial barrier disruption is unveiled. Afadin depletion resulted in enhanced thrombin-promoted barrier permeability, whereas adducin-1 depletion completely ablated thrombin-induced barrier disruption without compromising p38 signaling. However, loss of adducin-1 blocked APC-induced Akt signaling. These studies define distinct thrombin and APC dynamic signaling profiles and a rich array of proteins and biological pathways that engender PAR1 biased signaling in endothelial cells.
- Published
- 2020