1. Harnessing quantum chaos in spin-boson models for all-purpose quantum-enhanced sensing
- Author
-
Zhang, Yicheng, Castro, Juan Zuniga, and Lewis-Swan, Robert J.
- Subjects
Condensed Matter - Quantum Gases ,Quantum Physics - Abstract
Many-body quantum chaos has immense potential as a tool to accelerate the preparation of entangled states and overcome challenges due to decoherence and technical noise. Here, we study how chaos in the paradigmatic Dicke model, which describes the uniform coupling of an ensemble of qubits to a common bosonic mode, can enable the rapid generation of non-Gaussian entangled spin-boson states without fine tuning of system parameters or initial conditions. However, the complexity of these states means that unlocking their utility for quantum-enhanced sensing with standard protocols would require the measurement of complex or typically inaccessible observables. To address this challenge, we develop a sensing scheme based on interaction-based readout that enable us to implement near-optimal quantum-enhanced metrology of global spin rotations or bosonic dipslacements using only spin measurements. We show that our approach is robust to technical noise and imperfections and thus opens new opportunities to exploit complex entangled states generated by chaotic dynamics in current quantum science platforms such as trapped-ion and cavity-QED experiments., Comment: 14 pages, 9 figures
- Published
- 2024