Yu, Peicheng, Xu, Xinlu, Davidson, Asher, Tableman, Adam, Dalichaouch, Thamine, Meyers, Michael D., Tsung, Frank S., Decyk, Viktor K., Fiuza, Frederico, Vieira, Jorge, Fonseca, Ricardo A., Lu, Wei, Silva, Luis O., and Mori, Warren B.
When modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) algorithm in a Lorentz boosted frame, the plasma is drifting relativistically at $\beta_b c$ towards the laser, which can lead to a computational speedup of $\sim \gamma_b^2=(1-\beta_b^2)^{-1}$. Meanwhile, when LWFA is modeled in the quasi-3D geometry in which the electromagnetic fields and current are decomposed into a limited number of azimuthal harmonics, speedups are achieved by modeling three dimensional problems with the computation load on the order of two dimensional $r-z$ simulations. Here, we describe how to combine the speed ups from the Lorentz boosted frame and quasi-3D algorithms. The key to the combination is the use of a hybrid Yee-FFT solver in the quasi-3D geometry that can be used to effectively eliminate the Numerical Cerenkov Instability (NCI) that inevitably arises in a Lorentz boosted frame due to the unphysical coupling of Langmuir modes and EM modes of the relativistically drifting plasma in these simulations. In addition, based on the space-time distribution of the LWFA data in the lab and boosted frame, we propose to use a moving window to follow the drifting plasma to further reduce the computational load. We describe the details of how the NCI is eliminated for the quasi-3D geometry, the setups for simulations which combine the Lorentz boosted frame and quasi-3D geometry, the use of a moving window, and compare the results from these simulations against their corresponding lab frame cases. Good agreement is obtained, particularly when there is no self-trapping, which demonstrates it is possible to combine the Lorentz boosted frame and the quasi-3D algorithms when modeling LWFA to achieve unprecedented speedups.