1. A Zero-Inflated Poisson Latent Position Cluster Model
- Author
-
Lu, Chaoyi, Rastelli, Riccardo, and Friel, Nial
- Subjects
Statistics - Methodology ,Statistics - Applications ,Statistics - Computation - Abstract
The latent position network model (LPM) is a popular approach for the statistical analysis of network data. A central aspect of this model is that it assigns nodes to random positions in a latent space, such that the probability of an interaction between each pair of individuals or nodes is determined by their distance in this latent space. A key feature of this model is that it allows one to visualize nuanced structures via the latent space representation. The LPM can be further extended to the Latent Position Cluster Model (LPCM), to accommodate the clustering of nodes by assuming that the latent positions are distributed following a finite mixture distribution. In this paper, we extend the LPCM to accommodate missing network data and apply this to non-negative discrete weighted social networks. By treating missing data as ``unusual'' zero interactions, we propose a combination of the LPCM with the zero-inflated Poisson distribution. Statistical inference is based on a novel partially collapsed Markov chain Monte Carlo algorithm, where a Mixture-of-Finite-Mixtures (MFM) model is adopted to automatically determine the number of clusters and optimal group partitioning. Our algorithm features a truncated absorb-eject move, which is a novel adaptation of an idea commonly used in collapsed samplers, within the context of MFMs. Another aspect of our work is that we illustrate our results on 3-dimensional latent spaces, maintaining clear visualizations while achieving more flexibility than 2-dimensional models. The performance of this approach is illustrated via two carefully designed simulation studies, as well as four different publicly available real networks, where some interesting new perspectives are uncovered., Comment: 37 pages, 15 figures
- Published
- 2025