1. Laboratory Study of Collisionless Magnetic Reconnection
- Author
-
Ji, H., Yoo, J., Fox, W., Yamada, M., Argall, M., Egedal, J., Liu, Y. -H., Wilder, R., Eriksson, S., Daughton, W., Bergstedt, K., Bose, S., Burch, J., Torbert, R., Ng, J., and Chen, L. -J.
- Subjects
Physics - Plasma Physics ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Solar and Stellar Astrophysics ,Physics - Space Physics - Abstract
A concise review is given on the past two decades' results from laboratory experiments on collisionless magnetic reconnection in direct relation with space measurements, especially by Magnetospheric Multiscale (MMS) mission. Highlights include spatial structures of electromagnetic fields in ion and electron diffusion regions as a function of upstream symmetry and guide field strength; energy conversion and partition from magnetic field to ions and electrons including particle acceleration; electrostatic and electromagnetic kinetic plasma waves with various wavelengths; and plasmoid-mediated multiscale reconnection. Combined with the progress in theoretical, numerical, and observational studies, the physics foundation of fast reconnection in colisionless plasmas has been largely established, at least within the parameter ranges and spatial scales that were studied. Immediate and long-term future opportunities based on multiscale experiments and space missions supported by exascale computation are discussed, including dissipation by kinetic plasma waves, particle heating and acceleration, and multiscale physics across fluid and kinetic scales., Comment: 40 pages, 15 figures
- Published
- 2023