1. High-order BDF convolution quadrature for fractional evolution equations with hyper-singular source term
- Author
-
Shi, Jiankang, Chen, Minghua, and Cao, Jianxiong
- Subjects
Mathematics - Numerical Analysis - Abstract
Anomalous diffusion in the presence or absence of an external force field is often modelled in terms of the fractional evolution equations, which can involve the hyper-singular source term. For this case, conventional time stepping methods may exhibit a severe order reduction. Although a second-order numerical algorithm is provided for the subdiffusion model with a simple hyper-singular source term $t^{\mu}$, $-2<\mu<-1$ in [arXiv:2207.08447], the convergence analysis remain to be proved. To fill in these gaps, we present a simple and robust smoothing method for the hyper-singular source term, where the Hadamard finite-part integral is introduced. This method is based on the smoothing/ID$m$-BDF$k$ method proposed by the authors [Shi and Chen, SIAM J. Numer. Anal., to appear] for subdiffusion equation with a weakly singular source term. We prove that the $k$th-order convergence rate can be restored for the diffusion-wave case $\gamma \in (1,2)$ and sketch the proof for the subdiffusion case $\gamma \in (0,1)$, even if the source term is hyper-singular and the initial data is not compatible. Numerical experiments are provided to confirm the theoretical results.
- Published
- 2023