1. On the variety parametrizing completely decomposable polynomials
- Author
-
Arrondo, E. and Bernardi, A.
- Subjects
Mathematics - Algebraic Geometry ,Mathematics - Commutative Algebra ,14N05, 13P05 - Abstract
The purpose of this paper is to relate the variety parameterizing completely decomposable homogeneous polynomials of degree $d$ in $n+1$ variables on an algebraically closed field, called $\Split_{d}(\PP n)$, with the Grassmannian of $n-1$ dimensional projective subspaces of $\PP {n+d-1}$. We compute the dimension of some secant varieties to $\Split_{d}(\PP n)$ and find a counterexample to a conjecture that wanted its dimension related to the one of the secant variety to $\GG (n-1, n+d-1)$. Moreover by using an invariant embedding of the Veronse variety into the Pl\"ucker space, then we are able to compute the intersection of $\GG (n-1, n+d-1)$ with $\Split_{d}(\PP n)$, some of its secant variety, the tangential variety and the second osculating space to the Veronese variety., Comment: 30 pages
- Published
- 2009
- Full Text
- View/download PDF