1. Star network non-n-local correlations can resist consistency noises better
- Author
-
He, Kan and Han, Yueran
- Subjects
Quantum Physics ,81P40 - Abstract
Imperfections from devices can result in the decay or even vanish of non-n-local correlations as the number of parties n increases in the polygon and linear quantum networks ([Phys. Rev. A 106, 042206 (2022)] and [Phys. Rev. A 107, 032404 (2023)]). Even so this phenomenon is also for the special kind of noises, including consistency noises of a sequence of devices, which means the sequence of devices have the same probability fails to detect. However, in the paper, we discover that star network quantum non-n-local correlations can resist better consistency noises than these in polygon and linear networks. We first calculate the noisy expected value o f star network non-n-locality and analyze the persistency conditions theoretically. When assume that congener devices have the consistency noise, the persistency number of sources n has been rid of such noises, and approximates to the infinity. Polygon and linear network non-n-local correlations can not meet the requirements. Furthermore, we explore the change pattern of the maximal number of sources nmax such that non-nmax-local correlation can be demonstrated in the star network under the influence of partially consistent noises, which is more general than consistent ones., Comment: 23pages, 16 figures
- Published
- 2023