1. Mod pq Galois representations and Serre's conjecture
- Author
-
Khare, Chandrashekhar and Kiming, Ian
- Subjects
Mathematics - Number Theory ,11R ,11F - Abstract
Motives and automorphic forms of arithmetic type give rise to Galois representations that occur in {\it compatible families}. These compatible families are of p-adic representations with p varying. By reducing such a family mod p one obtains compatible families of mod p representations. While the representations that occur in such a p-adic or mod p family are strongly correlated, in a sense each member of the family reveals a new face of the motive. In recent celebrated work of Wiles playing off a pair of Galois representations in different characteristics has been crucial. In this paper we investigate when a pair of mod p and mod q representations of the absolute Galois group of a number field K simultaneously arises from an {\it automorphic motive}: we do this in the 1-dimensional (Section 2) and 2-dimensional (Section 3: this time assuming $K={\mathbb Q}$) cases. In Section 3 we formulate a mod pq version of Serre's conjecture refining in part a question of Barry Mazur and Ken Ribet., Comment: This is an older preprint that was made available elsewhere on Sep. 19, 2001
- Published
- 2002