1. Peptidylprolyl isomerase D circular RNA sensitizes breast cancer to trastuzumab through remodeling HER2 N4-acetylcytidine modification
- Author
-
Wang, Shengting, Li, Qian, Wang, Yufang, Li, Xiaoming, Feng, Xinghua, Wei, Yuxuan, Wang, Jiaman, and Zhou, Xin
- Abstract
Human epidermal growth factor receptor 2 (HER2) overexpression and activation are crucial for trastuzumab resistance in HER2-positive breast cancer; however, the potential regulatory mechanism of HER2 is still largely undetermined. In this study, a novel circular RNA derived from peptidylprolyl isomerase D (PPID) is identified as a negative regulator of trastuzumab resistance. Circ-PPID is highly stable and significantly downregulated in trastuzumab-resistant cells and tissues. Restoration of circ-PPID markedly enhances HER2-positive breast cell sensitivity to trastuzumab in vitroand in vivo. Circ-PPID directly binds to N-acetyltransferase 10 (NAT10) in the nucleus and blocks the interaction between NAT10 and HER2 mRNA, reducing N4-acetylcytidine (ac4C) modification on HER2 exon 25, leading to HER2 mRNA decay. Intriguingly, the subcellular localization of circ-PPID differs between trastuzumab-sensitive and -resistant cells. Circ-PPID in trastuzumab-resistant cells is located more in the cytoplasm, mainly due to the upregulation of Exportin 4 (XPO4), which results in the loss of spatial conditions for circ-PPID to bind to nuclear NAT10. Taken together, our data suggest that circ-PPID is a previously unappreciated ac4C-dependent HER2 epigenetic regulator, providing a promising therapeutic direction for overcoming trastuzumab resistance in clinical setting.
- Published
- 2024
- Full Text
- View/download PDF