In this paper a novel 3-D nonlinear finance chaotic system consisting of two nonlinearities with negative saving term, which is called 'dissaving' is presented. The dynamical analysis of the proposed system confirms its complex dynamic behavior, which is studied by using wellknown simulation tools of nonlinear theory, such as the bifurcation diagram, Lyapunov exponents and phase portraits. Also, some interesting phenomena related with nonlinear theory are observed, such as route to chaos through a period doubling sequence and crisis phenomena. In addition, an interesting scheme of adaptive control of finance system's behavior is presented. Furthermore, the novel nonlinear finance system is emulated by an electronic circuit and its dynamical behavior is studied by using the electronic simulation package Cadence OrCAD in order to confirm the feasibility of the theoretical model. [ABSTRACT FROM AUTHOR]