20 results on '"Tomkinson B"'
Search Results
2. Characterization and cloning of tripeptidyl peptidase II from the fruit fly, Drosophila melanogaster.
- Author
-
Renn, S C, Tomkinson, B, and Taghert, P H
- Abstract
We describe the characterization, cloning, and genetic analysis of tripeptidyl peptidase II (TPP II) from Drosophila melanogaster. Mammalian TPP II removes N-terminal tripeptides, has wide distribution, and has been identified as the cholecystokinin-degrading peptidase in rat brain. Size exclusion and ion exchange chromatography produced a 70-fold purification of dTPP II activity from Drosophila tissue extracts. The substrate specificity and the inhibitor sensitivity of dTPP II is comparable to that of the human enzyme. In particular, dTPP II is sensitive to butabindide, a specific inhibitor of the rat cholecystokinin-inactivating activity. We isolated a 4309-base pair dTPP II cDNA which predicts a 1354-amino acid protein. The deduced human and Drosophila TPP II proteins display 38% overall identity. The catalytic triad, its spacing, and the sequences that surround it are highly conserved; the C-terminal end of dTPP II contains a 100-amino acid insert not found in the mammalian proteins. Recombinant dTPP II displays the predicted activity following expression in HEK cells. TPP II maps to cytological position 49F4-7; animals deficient for this interval show reduced TPP II activity.
- Published
- 1998
3. Use of a Dehydroalanine-Containing Peptide as an Efficient Inhibitor of Tripeptidyl Peptidase II
- Author
-
Tomkinson, B., Grehn, L., Fransson, B., and Zetterqvist, O.
- Abstract
Tripeptidyl peptidase II is an intracellular exopeptidase, which has been purified from rat liver and human erythrocytes. An efficient specific inhibitor was obtained through β-elimination of phosphate from the phosphopeptide Arg-Ala-Ser(P)-Val-Ala. The dehydroalanine-containing peptide formed was a competitive inhibitor with a Kiof 0.02 ± 0.01 μM. This study demonstrated that replacing a serine residue in a good inhibitor with a dehydroalanine residue reduced the Ki45 times. It is proposed that dehydroalanine-containing peptides could be of interest in the development of inhibitors for other peptidases as well.
- Published
- 1994
- Full Text
- View/download PDF
4. Characterization of cDNA for murine tripeptidyl-peptidase II reveals alternative splicing
- Author
-
Tomkinson, B
- Abstract
Tripeptidyl-peptidase II (TPP II) is a cytosolic high-M(r) exopeptidase with an active site of the subtilisin type. This paper describes cloning of cDNA encoding murine TPP II. Four clones were isolated from a murine mastocytoma cDNA library and the 5′-end was isolated by use of 5′-RACE (rapid amplification of cDNA ends). A total of 4611 bp were isolated, including the complete coding region. The deduced amino acid sequence shows a 96% overall identity when compared with the previously cloned human TPP II. The remarkably high identity indicates that not only the catalytic domain, but almost the entire subunit, must be of functional importance. Alignment with subtilisin-like serine peptidases identified Asp44, His264 and Ser449 as the catalytic triad, thus defining an extra domain of approximately 200 amino acids between the catalytic Asp and His in TPP II as compared with other subtilases. In addition, it was demonstrated that different polyadenylation signals can be utilized, since two different clones with untranslated 3′-ends of 155 bp and 781 bp respectively have been isolated. Finally, one of the isolated clones contains an extra 39 bp insert encoding 13 amino acids, which implies alternative splicing of the mRNA.
- Published
- 1994
- Full Text
- View/download PDF
5. Deletion of DNA encoding the first five transmembrane domains of Epstein-Barr virus latent membrane proteins 2A and 2B
- Author
-
Longnecker, R, Miller, C L, Tomkinson, B, Miao, X Q, and Kieff, E
- Abstract
A recombinant Epstein-Barr virus (EBV) was constructed, with a positive-selection marker inserted at the site of a deletion of a DNA segment which encodes the first five transmembrane domains of LMP2A and LMP2B. Despite the mutation, the mutant recombinant EBV was able to initiate and maintain primary B-lymphocyte growth transformation in vitro. Cells transformed with the mutant recombinant were not different from wild-type virus transformants in initial or long-term outgrowth, sensitivity to limiting cell dilution, or serum requirement. Expression of EBNA1, EBNA2, EBNA3A, EBNA3C, and LMP1 and permissivity for lytic EBV infection were also unaffected by the LMP2 deletion mutation. These results complete the molecular genetic studies proving LMP2 is dispensable for primary B-lymphocyte growth transformation, latent infection, and lytic virus replication in vitro.
- Published
- 1993
- Full Text
- View/download PDF
6. Assignment of the linkage group EAM-TYRP2-TPP2 to chromosome 11 in pigs byin situ hybridization mapping of the TPP2 gene
- Author
-
Chowdhary, B. P., Johansson, M., Gu, F., Bräuner-Nielsen, P., Tomkinson, B., Andersson, L., and Gustavsson, I.
- Abstract
Restriction fragment length polymorphisms are described for the genes coding for tripeptidyl peptidase II (TPP2) and tyrosinase related protein II (TYRP2) in pigs. A linkage group comprising these loci and the locus for blood group M (EAM) was established by two-point lod score analysis in a three-generation pedigree. Multipoint analysis indicated the linear order EAM-1.1-TYRP2-8.4-TPP2 (recombination distances are given as Kosambi cM). The linkage group was assigned to porcine chromosome 11—the first on this chromosome—throughin situ hybridization mapping of the TPP2 gene. TPP2 is the first gene localized on this chromosome usingin situ hybridization.
- Published
- 1993
- Full Text
- View/download PDF
7. Recombinant Epstein-Barr virus with small RNA (EBER) genes deleted transforms lymphocytes and replicates in vitro.
- Author
-
Swaminathan, S, Tomkinson, B, and Kieff, E
- Abstract
Strains of Epstein-Barr virus (EBV) with deletions of the small RNA (EBER) genes were made by homologous recombination using the EBV P3HR-1 strain, which has undergone deletion of the essential transforming gene that encodes the EBV nuclear antigen, EBNA-2, and a DNA fragment that was wild type at the EBNA-2 locus but from which the EBER genes had been deleted. Even though the EBER and EBNA-2 genes are separated by 40 kilobases, selection for transforming P3HR-1 recombinants that required a restored EBNA-2 gene resulted in 20% cotransfer of the EBER deletion. EBER-deleted recombinants transformed primary B lymphocytes into lymphoblastoid cell lines (LCLs), which were indistinguishable form LCLs transformed by wild-type EBV in their proliferation, in latency-associated EBV gene expression, and in their permissiveness for EBV replication cycle gene expression. EBER-deleted virus from infected LCL clones could infect and growth-transform primary B lymphocytes. These procedures should be applicable to the construction of other EBV recombinants within 40 kilobases of the EBNA-2 gene. The EBER-deleted EBV recombinants should be useful in further evaluating the role of EBERs in EBV infection.
- Published
- 1991
- Full Text
- View/download PDF
8. Epstein-Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation
- Author
-
Tomkinson, B, Robertson, E, and Kieff, E
- Abstract
Recombinant Epstein-Barr viruses (EBV) with a translation termination codon mutation inserted into the nuclear protein 3A (EBNA-3A) or 3C (EBNA-3C) open reading frame were generated by second-site homologous recombination. These mutant viruses were used to infect primary B lymphocytes to assess the requirement of EBNA-3A or -3C for growth transformation. The frequency of obtaining transformants infected with a wild-type EBNA-3A recombinant EBV was 10 to 15%. In contrast, the frequency of obtaining transformants infected with a mutant EBNA-3A recombinant EBV was only 1.4% (9 mutants in 627 transformants analyzed). Transformants infected with mutant EBNA-3A recombinant virus could be obtained only by coinfection with another transformation-defective EBV which provided wild-type EBNA-3A in trans. Cells infected with mutant EBNA-3A recombinant virus lost the EBNA-3A mutation with expansion of the culture. The decreased frequency of recovery of the EBNA-3A mutation, the requirement for transformation-defective EBV coinfection, and the inability to maintain the EBNA-3A mutation indicate that EBNA-3A is essential or critical for lymphocyte growth transformation and that the EBNA-3A mutation has a partial dominant negative effect. Five transformants infected with mutant EBNA-3C recombinant virus EBV were also identified and expanded. All five also required wild-type EBNA-3C in trans. Serial passage of the mutant recombinant virus into primary B lymphocytes resulted in transformants only when wild-type EBNA-3C was provided in trans by coinfection with a transformation-defective EBV carrying a wild-type EBNA-3C gene. A secondary recombinant virus in which the mutated EBNA-3C gene was replaced by wild-type EBNA-3C was able to transform B lymphocytes. Thus, EBNA-3C is also essential or critical for primary B-lymphocyte growth transformation.
- Published
- 1993
- Full Text
- View/download PDF
9. The last seven transmembrane and carboxy-terminal cytoplasmic domains of Epstein-Barr virus latent membrane protein 2 (LMP2) are dispensable for lymphocyte infection and growth transformation in vitro
- Author
-
Longnecker, R, Miller, C L, Miao, X Q, Tomkinson, B, and Kieff, E
- Abstract
Specifically mutated Epstein-Barr virus (EBV) recombinants which truncate latent membrane protein 2A (LMP2A) and LMP2B after 260 of 497 amino acids and after 141 of 378 amino acids, respectively, were constructed. Despite truncation before the last seven transmembrane domains and the carboxy terminus, the mutant recombinants were not altered in initiation of primary B-lymphocyte infection or growth transformation, in expression of nuclear protein 1 or 2 or LMP1, or in induction of lytic EBV replication. Cells transformed by mutant virus recombinants were not different from wild-type virus transformants in initial or long-term outgrowth, sensitivity to limiting cell dilution, serum requirement, or clonogenic growth in soft agar. Together with similar analyses of a mutation stopping translation of the LMP2A amino-terminal cytoplasmic domain, these results indicate that LMP2 is not required for primary B-lymphocyte infection in vitro.
- Published
- 1993
- Full Text
- View/download PDF
10. Immunological cross-reactivity between human tripeptidyl peptidase II and fibronectin
- Author
-
Tomkinson, B and Zetterqvist, O
- Abstract
Tripeptidyl peptidase II (TPP II) is a large intracellular exopeptidase with an active site of the subtilisin type. Affinity-purified hen antibodies against human erythrocyte TPP II cross-reacted with fibronectin in an immunoblot analysis. Furthermore, antibodies against human fibronectin cross-reacted with TPP II. Antibodies against a 65 kDa cell-binding fragment of fibronectin specifically reacted with TPP II, whereas antibodies against the collagen-binding domain, the main heparin-binding domain or the N-terminal fibrin-binding domain did not react. Moreover, the affinity-purified antibodies against TPP II reacted with a 105 kDa cell-binding fragment of fibronectin but not with the fibrin-binding domain or the collagen-binding domain. When native TPP II was dissociated into smaller units through dialysis against a dilute Tris buffer, it could be digested by chymotrypsin into three stable fragments of 70 kDa, 42 kDa and 20 kDa. It could be demonstrated that the 42 kDa fragment was specifically recognized by antibodies against the 65 kDa cell-binding fragment of fibronectin. Furthermore, labelling with di-[3H]isopropyl phosphorofluoridate and N-terminal sequence determination showed that the 70 kDa fragment contained the active-site serine residue. In conclusion, our findings suggest that one domain of the TPP II molecule bears structural resemblance to a cell-binding fragment of fibronectin.
- Published
- 1990
- Full Text
- View/download PDF
11. Supramolecular structure of tripeptidyl peptidase II from human erythrocytes as studied by electron microscopy, and its correlation to enzyme activity
- Author
-
Macpherson, E, Tomkinson, B, Bålöw, R M, Höglund, S, and Zetterqvist, O
- Abstract
Tripeptidyl peptidase II is an extralysosomal serine peptidase of an unusually large size, i.e. Mr greater than 10(6) for the native enzyme and Mr 135000 for the subunit. The enzyme from human erythrocytes was studied by electron microscopy on samples negatively stained by ammonium molybdate. Two different structural representations of the purified enzyme were obtained, both with a length of about 50 nm, and consisting of repetitive substructures. Upon dialysis of the enzyme against a Tris/HCl buffer, the activity was gradually decreased. This decrease was shown to parallel the dissociation of the large enzyme structures into smaller ones, the smallest measuring 3 nm by 10 nm and apparently corresponding to the repetitive substructures. The results indicate that a large polymeric form of the enzyme is a prerequisite for full activity.
- Published
- 1987
- Full Text
- View/download PDF
12. Epstein-Barr virus nuclear protein 3C modulates transcription through interaction with the sequence-specific DNA-binding protein J kappa
- Author
-
Robertson, E S, Grossman, S, Johannsen, E, Miller, C, Lin, J, Tomkinson, B, and Kieff, E
- Abstract
The Epstein-Barr virus (EBV) nuclear protein 3C (EBNA 3C) is essential for EBV-mediated transformation of primary B lymphocytes, is turned on by EBNA 2, and regulates transcription of some of the viral and cellular genes which are regulated by EBNA 2. EBNA 2 is targeted to response elements by binding to the DNA sequence-specific, transcriptional repressor protein J kappa. We now show that EBNA 3C also binds to J kappa. EBNA 3C causes J kappa to not bind DNA or EBNA 2. J kappa DNA binding activity in EBV-transformed lymphoblastoid cells is consequently reduced. More than 10% of the EBNA 3C coimmunoprecipitated with J kappa from extracts of non-EBV-infected B lymphoblasts that had been stably converted to EBNA 3C expression. EBNA 3C in nuclear extracts from these cells (or in vitro-translated EBNA 3C) prevented J kappa from interacting with a high-affinity DNA binding site. Under conditions of transient overexpression in B lymphoblasts, EBNA 2 and EBNA 3C associated with J kappa and less EBNA 2 associated with J kappa when EBNA 3C was coexpressed in the same cell. EBNA 3C had no effect on the activity of a -512/+40 LMP1 promoter-CAT reporter construct that has two upstream J kappa sites, but it did inhibit EBNA 2 transactivation of this promoter. These data are compatible with a role for EBNA 3C as a "feedback" down modulator of EBNA 2-mediated transactivation. EBNA 3C could, in theory, also activate transcription by inhibiting the interaction of the J kappa repressor with its cognate DNA. The interaction of two viral transcriptional regulators with the same cell protein may reflect an unusually high level of complexity or stringency in target gene regulation.
- Published
- 1995
- Full Text
- View/download PDF
13. An Epstein-Barr virus with a 58-kilobase-pair deletion that includes BARF0 transforms B lymphocytes in vitro
- Author
-
Robertson, E S, Tomkinson, B, and Kieff, E
- Abstract
A family of Epstein-Barr virus (EBV)-encoded RNAs found in nasopharyngeal carcinoma cells is also present at low levels in some latently infected and growth-transformed B lymphocytes (P. R. Smith, Y. Gao, L. Karran, M. D. Jones, D. Snudden, and B. E. Griffin, J. Virol. 67:3217-3225, 1993). A molecular genetic approach using EBV recombinants was undertaken to evaluate the role of these transcripts in primary B-lymphocyte growth transformation and latent infection. Since the se transcripts arise from a 22-kbp segment of the EBV genome and construction of large deletion mutants is an improbable result after transfection of infected cells with an EBV DNA fragment with a large deletion mutation, a new approach was taken to make a recombinant with the DNA encoding all of the BARF0 RNAs deleted. The approach derives from a recently described strategy for making recombinants from five overlapping EBV cosmid-cloned DNAs (B. Tomkinson, E. Robertson, R. Yalamanchili, R. Longnecker, and E. Kieff, J. Virol. 67:7298-7306, 1993). A large segment of EBV DNA was deleted from the transfected cosmid DNAs by omitting a cosmid which included all of the DNA encoding the BARF0 RNA and by ligating the distal halves of the two flanking cosmids so as to create one cosmid which had ends that overlapped with the other two unaltered cosmids. EBV recombinants with 58 kbp including BARF0 deleted resulted from transfecting the three overlapping EBV DNA fragments into P3HR-1 cells and simultaneously inducing lytic replication of the endogenous, transformation-defective, P3HR-1 EBV. The endogenous P3HR-1 EBV provided lytic infection and packaging functions. EBV recombinants with intact transforming functions were then selected by infecting primary B lymphocytes and growing the resultant transformed cells in lymphoblastoid cell lines. The efficiency of incorporation of the deletion into transforming EBV recombinants was close to that of a known indifferent marker, the type 1 EBNA 3A gene, indicating the absence of significant selection against the deletion. Cells infected with the deleted recombinant grew similarly to those infected with wild-type recombinants and had a similar level of permissiveness for lytic EBV infection. Thus, the BARF0 transcript is not critical to primary B-lymphocyte growth transformation or to latent infection. This methodology is useful for constructing EBV recombinants which are specifically mutated at other sites in the three cosmids and is a step toward deriving a minimal transforming EBV genome.
- Published
- 1994
- Full Text
- View/download PDF
14. Epstein-Barr virus recombinants from overlapping cosmid fragments
- Author
-
Tomkinson, B, Robertson, E, Yalamanchili, R, Longnecker, R, and Kieff, E
- Abstract
Five overlapping type 1 Epstein-Barr virus (EBV) DNA fragments constituting a complete replication- and transformation-competent genome were cloned into cosmids and transfected together into P3HR-1 cells, along with a plasmid encoding the Z immediate-early activator of EBV replication. P3HR-1 cells harbor a type 2 EBV which is unable to transform primary B lymphocytes because of a deletion of DNA encoding EBNA LP and EBNA 2, but the P3HR-1 EBV can provide replication functions in trans and can recombine with the transfected cosmids. EBV recombinants which have the type 1 EBNA LP and 2 genes from the transfected EcoRI-A cosmid DNA were selectively and clonally recovered by exploiting the unique ability of the recombinants to transform primary B lymphocytes into lymphoblastoid cell lines. PCR and immunoblot analyses for seven distinguishing markers of the type 1 transfected DNAs identified cell lines infected with EBV recombinants which had incorporated EBV DNA fragments beyond the transformation marker-rescuing EcoRI-A fragment. Approximately 10% of the transforming virus recombinants had markers mapping at 7, 46 to 52, 93 to 100, 108 to 110, 122, and 152 kbp from the 172-kbp transfected genome. These recombinants probably result from recombination among the transfected cosmid-cloned EBV DNA fragments. The one recombinant virus examined in detail by Southern blot analysis has all the polymorphisms characteristic of the transfected type 1 cosmid DNA and none characteristic of the type 2 P3HR-1 EBV DNA. This recombinant was wild type in primary B-lymphocyte infection, growth transformation, and lytic replication. Overall, the type 1 EBNA 3A gene was incorporated into 26% of the transformation marker-rescued recombinants, a frequency which was considerably higher than that observed in previous experiments with two-cosmid EBV DNA cotransfections into P3HR-1 cells (B. Tomkinson and E. Kieff, J. Virol. 66:780-789, 1992). Of the recombinants which had incorporated the marker-rescuing cosmid DNA fragment and the fragment encoding the type 1 EBNA 3A gene, most had incorporated markers from at least two other transfected cosmid DNA fragments, indicating a propensity for multiple homologous recombinations. The frequency of incorporation of the nonselected transfected type 1 EBNA 3C gene, which is near the end of two of the transfected cosmids, was 26% overall, versus 3% in previous experiments using transfections with two EBV DNA cosmids. In contrast, the frequency of incorporation of a 12-kb EBV DNA deletion which was near the end of two of the transfected cosmids was only 13%.(ABSTRACT TRUNCATED AT 400 WORDS)
- Published
- 1993
- Full Text
- View/download PDF
15. BHRF1, the Epstein-Barr virus gene with homology to Bc12, is dispensable for B-lymphocyte transformation and virus replication
- Author
-
Marchini, A, Tomkinson, B, Cohen, J I, and Kieff, E
- Abstract
The Epstein-Barr virus (EBV) BHRF1 open reading frame is abundantly expressed early in the lytic replication cycle. BHRF1 is also transiently expressed in some latently infected cell lines in the absence of expression of other lytic cycle proteins. BHRF1 shares distant, but significant, colinear primary amino acid sequence homology to Bc12, a cellular gene strongly implicated in the evolution of follicular lymphoma. The experiments reported here used a molecular genetic approach to examine the role of BHRF1 in EBV infection. Isogenic EBV recombinants having either wild-type BHRF1 or a null mutation due to a translational stop signal in place of the 24th BHRF1 codon were used to infect primary B lymphocytes. The BHRF1 mutant recombinants did not differ from the wild type in their ability to infect and transform the growth of primary B lymphocytes, to replicate in the resultant lymphoblastoid cell lines, or to initiate a second round of primary cell transformation. Deletion of the entire BHRF1 open reading frame did not destroy the ability of the mutant virus to maintain cell growth transformation. The significance of these findings with regard to the role of BHRF1 in EBV infection is discussed.
- Published
- 1991
- Full Text
- View/download PDF
16. Active site of tripeptidyl peptidase II from human erythrocytes is of the subtilisin type.
- Author
-
Tomkinson, B, Wernstedt, C, Hellman, U, and Zetterqvist, O
- Abstract
The present report presents evidence that the amino acid sequence around the serine of the active site of human tripeptidyl peptidase II is of the subtilisin type. The enzyme from human erythrocytes was covalently labeled at its active site with [3H]diisopropyl fluorophosphate, and the protein was subsequently reduced, alkylated, and digested with trypsin. The labeled tryptic peptides were purified by gel filtration and repeated reversed-phase HPLC, and their amino-terminal sequences were determined. Residue 9 contained the radioactive label and was, therefore, considered to be the active serine residue. The primary structure of the part of the active site (residues 1-10) containing this residue was concluded to be Xaa-Thr-Gln-Leu-Met-Asx-Gly-Thr-Ser-Met. This amino acid sequence is homologous to the sequence surrounding the active serine of the microbial peptidases subtilisin and thermitase. These data demonstrate that human tripeptidyl peptidase II represents a potentially distinct class of human peptidases and raise the question of an evolutionary relationship between the active site of a mammalian peptidase and that of the subtilisin family of serine peptidases.
- Published
- 1987
- Full Text
- View/download PDF
17. Second-site homologous recombination in Epstein-Barr virus: insertion of type 1 EBNA 3 genes in place of type 2 has no effect on in vitro infection
- Author
-
Tomkinson, B and Kieff, E
- Abstract
This study was undertaken to develop a general strategy for the introduction of mutations into specific sites in the Epstein-Barr virus (EBV) genome. Previous approaches were limited by the need for physical linkage of the transfected EBV DNA fragment to a positive selection marker. In our experiments, a positive selection marker was introduced into one site in the EBV genome and a distant, nonlinked, marker was introduced into another site. Each marker was on a large EBV DNA fragment and was inserted into the genome by transfection into cells carrying a resident EBV genome. The resident EBV genome was simultaneously induced to replicate by using a cotransfected expression plasmid for the EBV immediate-early transactivator, Z (J. Countryman, H. Jenson, R. Seibl, H. Wolf, and G. Miller, J. Virol. 61:3672-3679, 1987; G. Miller, M. Rabson, and L. Heston, J. Virol. 50:174-182, 1984). Eleven percent of the resultant EBV genomes which incorporated the positive selection marker also incorporated the nonlinked marker. Both markers uniformly targeted the homologous EBV genome site. In this way novel EBV recombinants were constructed in which the EBV type 1 EBNA 3A, EBV type 1 EBNA 3A and 3B, or EBV type 1 EBNA 3A, 3B, and 3C genes were introduced into a largely type 2 EBV genome, replacing the corresponding type 2 gene(s). No difference was observed in primary B-lymphocyte growth transformation, in latent EBV gene expression, or in spontaneous lytic EBV gene expression. These new recombinants should be useful for ongoing analyses of the type specificity of the immune response.
- Published
- 1992
- Full Text
- View/download PDF
18. A human serine endopeptidase, purified with respect to activity against a peptide with phosphoserine in the P1' position, is apparently identical with prolyl endopeptidase
- Author
-
Rosén, J, Tomkinson, B, Pettersson, G, and Zetterqvist, O
- Abstract
The present work describes the detection, purification, and characterization of a serine endopeptidase with preference for a phosphoserine in the P1‘ position of the substrate. During probing for the enzyme in crude extracts, as well as during its 64,000-fold purification, 32P-labeled guanidovaleryl-Arg-Ala-Ser(P)-isobutyl amide (I) was used to measure the cleavage of the Ala-Ser(P) bond. With this substrate, kcat was 1.7 s-1 and Km was 30 microM at the pH optimum, 7.5. The enzyme was classified as a serine peptidase from its reaction with a set of inhibitors, among which diisopropyl fluorophosphate was effective at low (20 microM) concentration. The endopeptidase showed an Mr of 74,000 under native as well as denaturing and reducing conditions, indicating that the native enzyme consists of only one major polypeptide chain. The molecular size and inhibition profile suggested identity of this enzyme with prolyl endopeptidase (EC 3.4.21.26). This was supported by its activity against specific substrates, such as succinyl-Gly-Pro-Leu-Pro-7-amido-4-methylcoumarin (kcat = 7.2 s-1 and Km = 290 microM), and by the inhibition of the latter activity by I. Compared with the cleavage of 100 microM I, Gly-Val-Leu-Arg-Arg-Ala-Ser-Val-Ala-Gln-Leu, after phosphorylation by cAMP-dependent protein kinase, was cleaved at the Ala-Ser(P) bond at a relative rate of 0.43, while cleavage of the Ala-Ser bond of the unphosphorylated undecapeptide was undetectable, i.e. less than 0.03. The pentapeptide Arg-Arg-Pro-Ser-Val was rapidly cleaved at the Pro-Ser bond (relative rate, 2.2). Still, the cleavage of the Pro-Ser(P) bond of the corresponding phosphorylated pentapeptide was even higher (relative rate, 4.0). These data suggest that phosphorylation of a serine residue in the P1‘ position of at least a few substrates of prolyl endopeptidase will increase the rate of their cleavage.
- Published
- 1991
- Full Text
- View/download PDF
19. Purification, substrate specificity, and classification of tripeptidyl peptidase II.
- Author
-
Bålöw, R M, Tomkinson, B, Ragnarsson, U, and Zetterqvist, O
- Abstract
An extralysosomal tripeptide-releasing aminopeptidase was recently discovered in rat liver (Bålöw, R.-M., Ragnarsson, U., and Zetterqvist, O. (1983) J. Biol. Chem. 258, 11622-11628). In the present work this tripeptidyl peptidase is shown to occur in several rat tissues and in human erythrocytes. The erythrocyte enzyme was purified about 80,000-fold from a hemolysate while the rat liver enzyme was purified about 4,000-fold from a homogenate. Upon polyacrylamide gel electrophoresis in sodium dodecyl sulfate under reducing conditions more than 90% of the protein was represented by a polypeptide of Mr 135,000 in both cases. In addition, the two enzymes eluted at similar positions in the various chromatographic steps, showed similar specific activity, and had a pH optimum around 7.5. A tryptic pentadecapeptide from the alpha-chain of human hemoglobin, Val-Gly-Ala-His-Ala-Gly-Glu-Tyr-Gly-Ala-Glu-Ala-Leu-Glu-Arg, i.e. residues 17-31, was found to be sequentially cleaved by the erythrocyte enzyme into five tripeptides, beginning from the NH2 terminus. Chromogenic tripeptidylamides showed various rates of hydrolysis at pH 7.5. With Ala-Ala-Phe-4-methyl-7-coumarylamide, Km was 16 microM and Vmax 13 mumol min-1 . mg-1, comparable to the standard substrate Arg-Arg-Ala-Ser(32P)-Val-Ala values (Km 13 microM and Vmax 24 mumol . min-1 . mg-1). The tripeptidyl peptidase of human erythrocytes was classified as a serine peptidase from its irreversible inhibition by phenylmethanesulfonyl fluoride and diisopropyl fluorophosphate. The rate of inhibition was decreased by the presence of an efficient competitive inhibitor, Val-Leu-Arg-Arg-Ala-Ser-Val-Ala (Ki 1.5 microM). [3H]Diisopropylphosphate was incorporated to the extent of 0.7-0.9 mol/mol of Mr 135,000 subunit, which confirms the high purity of the enzyme.
- Published
- 1986
- Full Text
- View/download PDF
20. Characterization of cDNA for murine tripeptidyl-peptidase II reveals alternative splicing
- Author
-
Tomkinson, B
- Published
- 1995
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.