1. Effects of Secondary Polymer Covalently Attached to Monodisperse, Poly(maleic anhydride–styrene)-Modified Colloidal Silica on Dispersibility in Organic Solvent
- Author
-
Yoshinaga, Kohji, Shimada, Junji, Nishida, Hiroyasu, and Komatsu, Michio
- Abstract
Effects of surface-grafted polymer on the dispersibility of polymer–silica composite particles in ethyl acetate–methanol cosolvent were investigated. The composite particles were prepared by a two-step modification of monodisperse colloidal silica (120 nm in diameter). Modifications were carried out by first reacting the surface silanol of the colloidal silica with maleic anhydride–styrene copolymer silane coupling agent to prevent aggregation and then grafting, in acetone or tetrahydrofuran, amino group-terminated poly(methyl acrylate), poly(methyl methacrylate), or polystyrene to the maleic anhydride moiety on the surface. For poly(methyl acrylate) and poly(methyl methacrylate) graftings, composite particles with long polymer chains aggregated in methanol-rich cosolvent due to insoluble secondary polymer chain interaction among the particles. Particles with a small amount of relatively low-molecular-weight secondary polymer were dispersible in the methanol content range from 0 to 90 vol%. Polystyrene-modified particles never aggregated, even in 90 vol% methanol solution. An ESR study of the suspension in ethyl acetate–hexane cosolvent suggested that the dispersibility of these composite particles in ethyl acetate-rich solution is attributable to steric repulsion between solvated and expanded secondary polymer chains among the particles. The dispersibility of the composite particles in methanol-rich solution was controlled by a delicate balance between the electrostatic repulsion and the interparticle attraction due to the desolvated and insoluble polymer chain interaction among the particles.
- Published
- 1999
- Full Text
- View/download PDF