1. Complement-dependent and -independent aquaporin 4-antibody-mediated cytotoxicity in human astrocytes: Pathogenetic implications in neuromyelitis optica
- Author
-
Nishiyama, S., Misu, T., Nuriya, M., Takano, R., Takahashi, T., Nakashima, I., Yasui, M., Itoyama, Y., Aoki, M., and Fujihara, K.
- Abstract
Neuromyelitis optica (NMO) is an inflammatory disease caused by the aquaporin (AQP)-4-antibody. Pathological studies on NMO have revealed extensive astrocytic damage, as evidenced by the loss of AQP4 and glial fibrillary acidic protein (GFAP), specifically in perivascular regions with immunoglobulin and complement depositions, although other pathological patterns, such as a loss of AQP4 without astrocyte destruction and clasmatodendrosis, have also been observed. Previous studies have shown that complement-dependent antibody-mediated astrocyte lysis is likely a major pathomechanism in NMO. However, there are also data to suggest antibody-mediated astrocyte dysfunction in the absence of complement. Thus, the importance of complement inhibitory proteins in complement-dependent AQP4-antibody-mediated astrocyte lysis in NMO is unclear. In most of the previous studies, the complement and target cells (astrocytes or AQP4-transfected cells) were derived from different species; however, the complement inhibitory proteins that are expressed on the cell surface cannot protect themselves against complement-dependent cytolysis unless the complements and complement inhibitory proteins are from the same species. To resolve these issues, we studied human astrocytes in primary culture treated with AQP4-antibody in the presence or absence of human complement and examined the effect of complement inhibitory proteins using small interfering RNA (siRNA).
- Published
- 2016
- Full Text
- View/download PDF