1. Modeling and SINR Analysis of Dual Connectivity in Downlink Heterogeneous Cellular Networks.
- Author
-
Xianling Wang, Min Xiao, Hongyi Zhang, and Sida Song
- Subjects
INTERNET traffic ,SIGNAL-to-noise ratio ,COMPUTER networks ,MONTE Carlo method ,WIRELESS communications ,MOBILE apps - Abstract
Small cell deployment offers a low-cost solution for the boosted traffic demand in heterogeneous cellular networks (HCNs). Besides improved spatial spectrum efficiency and energy efficiency, future HCNs are also featured with the trend of network architecture convergence and feasibility for flexible mobile applications. To achieve these goals, dual connectivity (DC) is playing a more and more important role to support control/user-plane splitting, which enables maintaining fixed control channel connections for reliability. In this paper, we develop a tractable framework for the downlink SINR analysis of DC assisted HCN. Based on stochastic geometry model, the data-control joint coverage probabilities under multi-frequency and single-frequency tiering are derived, which involve quick integrals and admit simple closed-forms in special cases. Monte Carlo simulations confirm the accuracy of the expressions. It is observed that the increase in mobility robustness of DC is at the price of control channel SINR degradation. This degradation severely worsens the joint coverage performance under single-frequency tiering, proving multi-frequency tiering a more feasible networking scheme to utilize the advantage of DC effectively. Moreover, the joint coverage probability can be maximized by adjusting the density ratio of small cell and macro cell eNBs under multi-frequency tiering, though changing cell association bias has little impact on the level of the maximal coverage performance. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF