1. Theoretical study of the design dye-sensitivity for usage in the solar cell device.
- Author
-
Alrikabi, Alaa
- Abstract
There are many applications in the polymer chemistry, pharmaceutical, agricultural and industrial fields of the thiadiazole molecule and their derivatives. Allowance of the energy gap of the polymer conjugated is an object of great interesting debit for the possible removal of a doping in the preparation of highly conductivity polymers. Thiadiazoles derivatives are structural foundation of the polymer materials. In this present work, the electronic properties of graphene nanoflakes (GNFs)-phenanthrene-1,3,4-thiadiazoles oligomers are studied and discussed. Where thiadiazoles is expanded from one to 9 unit's molecules at the structure. The energy gap, HOMO, LUMO distribution, total energy, Fermi level energy, work function, maximum wavelength absorption, vertical absorption energies, and oscillator strengths are calculated for each molecule. All calculations are carry out by usage density function theory (DFT) and depended time density function theory (TD-DFT) with the B3LYP/6-31G model in the Gaussian 09W software packages. Results show that increasing the number of monomeric units lead to great enhance in the electronic properties, which caused it decreased the band gap from 3.17 eV in the system with one unit of thiadiazole just to 1.35 eV in the system with 9 units of thiadiazole. This case is raised the value of maximum absorption wavelengths to >500 nm to give the better performance in optoelectronic and solar cell, as these structures have prime absorption bands within the solar spectrum. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF