A study was conducted to characterize the bacterial and biochemical composition of the jejunoileal content of veal calves and the effect of pre-slaughter fasting time. At 22 wk of age, 22 preruminant Prim'Holstein calves fed milk replacer and pellets (mainly composed of corn) were slaughtered at 6, 12, or 24 h after their last meal. Chyme samples were collected from the jejunoileal compartment just after slaughter, and pH and redox potential were immediately measured. Culture-based methods were used to determine the concentrations of total anaerobic microflora, lactate-utilizing bacteria, Bacteroides fragilisgroup, Lactobacilli, Bifidobacteria, Enterococci, and 2 potential pathogenic species, Escherichia coliand Clostridium perfringens. Concentrations of L-lactate, ammonia, and short-chain fatty acids (SCFA) were determined on frozen samples. The biochemical composition (DM, total protein, lactose, galactose, glucose, minerals, AA profile, and fatty acid profile) of the jejunoileal content was determined only on samples from the 6-h fasted group. Microflora concentrations were greater (P< 0.01) in the 6-h fasted group compared with the 12- and 24-h fasted groups, involving a decreased pH (P< 0.05) and greater lactate and SCFA concentrations, both linked directly to the fermentative state of the microorganisms. The 6-h fasted group showed the least interanimal variability in bacterial group levels, except for Cl. perfringens, which presented increased interanimal variability regardless of fasting time. At 6 h postprandial, the jejunoileal content of veal calves seemed to be in a stable state, allowing the creation of a database on its biochemical composition. This study is a key first step in the development of an in vitro system for modeling the jejunoileal ecosystem of veal calves. This model will provide a useful tool for assessing the effects of feed additives on intestinal microflora.