Les àrees del secà mediterrànies es transformen en regadiu per estabilitzar o millorar el rendiment dels cultius. L’ocupació gradual del riego ha permès augmentar l’ús del nitrogen i la intensitat del laboreo. Per tant, l'objectiu principal d'aquest estudi va ser la d’evaluar els efectes dels diferents sistemes de conreu i les dosis de fertilitzants de N en les emissions de GEH (metà, CH4; diòxid de carboni, CO2, òxid nitrós, N2O) a l'atmosfera, així com, el segrest de C del sòl, l'estructura de la superfície del sòl i la productivitat del cultiu en una àrea recentment transformada a regadiu. Per aconseguir aquest objectiu, es va dur a terme un estudi en NE Espanya en un experiment de llarga durada (LTE) de conreu i dosis de fertilització N establert el 1996 sota la producció d'ordi (Hordeum vulgare L.) en secà, posteriorment, es transformar en monocultiu blat de moro (Zea mays L.) amb reg per aspersió en 2015. Aquest estudi es va realitzar durant tres campanyes consecutives de cultiu de blat de moro (és a dir, els anys 2015, 2016 i 2017). Es van comparar tres tipus de conreu (conreu convencional, CT, conreu reduït, RT, No conreu, NT) i tres dosis de fertilització mineral N (0, 200, 400 kg N ha-1) en un disseny de blocs a l'atzar amb tres repeticions. El 2015, es va crear un experiment adjacent (experiment a curt termini, STE) amb el mateix disseny que el LTE però amb una gestió anterior diferent basada en NT. En el LTE, les emissions de CO2, CH4 i N2O del sòl es van quantificar durant tres anys. A més, es va calcular el factor d'emissió de N2O (EF) i les emissions de N2O a escala de rendiment. També, es va calcular la taxa anual del segrest de SOC (ΔSOCrate) (0-40 cm de profunditat) per a cada tractament en tres períodes diferents (P1-, P2-, P3-) en condicions de secà (-R) i condicions de regadiu (-I) (P1-R, de 1996 a 2009; P2-R, de 2009 al 2015; P3-I, de 2015 a 2017). A més, en LTE i STE superfície del sòl (0-5 cm) es van mesurar macroagregats secs i estables en l’aigua i la seva concentració de C, així com altres fraccions del sòl (concentració total de SOC i concentració de C làbil). Així mateix, es va analitzar la resistència a la penetració en la superfície del sòl (PR) i la infiltració d'aigua durant la segona temporada de cultiu de blat de moro (és a dir, l'any 2016). Ingualment, en els dos camps experimentals, es va mesurar anualment la biomassa aèria, el rendiment de gra, els components de rendiment i l'eficiència d'ús d'aigua i nitrogen (WUE i NUE, respectivament). En els agroecosistemes Mediterranis recentment transformats a regadiu, una reducció de la dosi de fertilització N juntament amb una reducció en el conreu, és una estratègia òptima en termes de manteniment de la productivitat dels cultius. A més, la reducció del conreu millora l'estat estructural del sòl, per tal de proporcionar al sòl suficient resistència i assegurar un desenvolupament òptim dels cultius. Si bé la reducció del conreu genera més emissions de GEH del sòl a l'atmosfera, aquestes es compensen amb un major rendiment de blat de moro i segrest de SOC. Las áreas de secano Mediterráneas se transforman en regadio para estabilizar o aumentar el rendimiento de los cultivos. La ocupación gradual del riego lleva a un aumento en el uso de nitrógeno y la intensidad del laboreo. Por lo tanto, el objetivo principal de este estudio fue la evaluar los efectos de los diferentes sistemas de laboreo y las dosis de fertilizantes de N en las emisiones de GEI (metano, CH4; dióxido de carbono, CO2, óxido nitroso, N2O) a la atmósfera, así como, el secuestro de C del suelo, la estructura de la superficie del suelo y la productividad del cultivo en un área recientemente transformada a regadío. Para lograr ese objetivo, se llevó a cabo un estudio en NE España en un experimento de larga duración (LTE) de laboreo y dosis de fertilización N establecido en 1996 bajo la producción de cebada (Hordeum vulgare L.) en secano, posteriormente, se transformó en monocultivo maíz (Zea mays L.) con riego por aspersión en 2015. Este estudio se realizó durante tres campañas consecutivas de cultivo de maíz (es decir, los años 2015, 2016 y 2017). Se compararon tres tipos de laboreo (laboreo convencional, CT, laboreo reducido, RT, No laboreo, NT) y tres dosis de fertilización mineral N (0, 200, 400 kg N ha-1) en un diseño de bloques al azar con tres repeticiones. En 2015, se creó un experimento adyacente (experimento a corto plazo, STE) con el mismo diseño que el LTE pero con una gestión anterior diferente basada en NT. En el LTE, las emisiones de CO2, CH4 y N2O del suelo se cuantificaron durante tres años. Además, se calculó el factor de emisión de N2O (EF) y las emisiones de N2O a escala de rendimiento. También, se calculó la tasa anual de secuestro de SOC (∆SOCrate) (0-40 cm de profundidad) para cada tratamiento en tres periodos diferentes (P1-, P2-, P3-) en condiciones de secano (-R) y condiciones de regadio (-I) (P1-R, de 1996 a 2009; P2-R, de 2009 a 2015; P3-I, de 2015 a 2017). Además, en LTE y STE superficie del suelo (0-5 cm) se midieron macroagregados secos y estables en agua y su concentración de C, así como otras fracciones del suelo (concentración total de SOC y concentración de C lábil). Asimismo, se analizaron la resistencia a la penetración en la superficie del suelo (PR) y la infiltración de agua durante la segunda temporada de cultivo de maíz (es decir, el año 2016). Ingualmente, en ambos campos experimentales, se midió anualmente la biomasa aerea, el rendimiento de grano, los componentes de rendimiento y la eficiencia de uso de agua y nitrógeno (WUE y NUE, respectivamente). En los agroecosistemas Mediterráneos recientemente transformados a regadio, una reducción de la dosis de fertilización N junto con una reducción en el laboreo, es una estrategia óptima en términos de mantenimiento de la productividad de los cultivos. Además, la disminución del laboreo mejora el estado estructural del suelo, a fin de proporcionar al suelo suficiente resistencia y asegurar un desarrollo óptimo de los cultivos. Si bien la reducción del laboreo genera mayores emisiones de GEI del suelo a la atmósfera, estas se compensan con un mayor rendimiento de maíz y secuestro de SOC. Mediterranean rainfed areas are transformed into irrigation to stabilize or increase crop yields. The gradual occupation of irrigation leads to an increase in nitrogen use and intensity of tillage. Therefore, the main objective of this study was the identification of the effect of different tillage systems and N fertilizer rates on GHG emissions (methane, CH4; carbon dioxide, CO2; nitrous oxide, N2O) to the atmosphere, as well as, soil C sequestration, soil surface structure and crop productivity when converting rainfed lands to irrigated. In order to achieve that objective a study was carried out in NE Spain in a long-term (LTE) tillage and N rate field experiment established in 1996 under rainfed barley (Hordeum vulgare L.) conditions which was converted to irrigation with maize (Zea mays L.) monoculture as cropping system in 2015. This study was conducted during three consecutive maize growing seasons (i.e. years 2015, 2016, and 2017). Three types of tillage (conventional tillage, CT; reduced tillage, RT; no-tillage, NT) and three mineral N fertilization rates (0, 200, 400 kg N ha-1) were compared in a randomized block design with three replications. In 2015, an adjacent experiment (short-term experiment, STE) with the same layout as the LTE but with different previous management based on NT was set up. In the LTE, soil CO2, CH4 and N2O emissions were quantified during three years. Also, N2O emission factor (EF) and yield-scaled N2O emissions were determined. In addition, annual SOC sequestration rate (∆SOCrate) (0-40 cm depth) was calculated for each treatment in three different periods (P1-, P2-, P3-) under rainfed (-R) conditions and irrigated (-I) conditions (P1-R, from 1996 to 2009; P2-R, 2009 to 2015; P3-I, from 2015 to 2017). Moreover, in LTE and STE soil surface (0-5 cm) dry and water-stable macroaggregates and their C concentration, as well as other soil fractions (total SOC concentration and labile C concentration) were measured. Also soil surface penetration resistance (PR), and water infiltration were analyzed during the second maize growing season (i.e. year 2016). In addition, in both experimental fields, above ground biomass, maize grain yield, yield components and water and nitrogen use efficiency (WUE and NUE, respectively) were measured annually. In Mediterranean agroecosystems recently transformed to irrigated land, a reduction in N fertilization rate together with a reduction in tillage are optimum strategies in terms of maintenance of crop productivity. In addition, reductions of tillage improve the structural state of the soil, in order to provide the soil enough resilience and ensure an optimum development of crops. Although the reduction of tillage generates higher GHG emissions from the soil to the atmosphere, this is compensated by a greater maize yield and SOC sequestration.