80 results on '"Yu. V. Stenkin"'
Search Results
2. Environmental Fluxes of Thermal Neutrons and Geophysics
- Author
-
Yu. V. Stenkin
- Subjects
Nuclear and High Energy Physics ,Atomic and Molecular Physics, and Optics - Abstract
Abstract Environmental fluxes of thermal neutrons originate from two sources: cosmic rays and natural radioactivity. Owing to a long lifetime of free neutrons, they are able to propagate over rather long distances in surrounding media prior to undergoing absorption, provided that these media do not contain elements that have large cross sections for neutron capture. The real lifetime of free neutrons and distances that they travel are determined by the properties of the medium with which they are in a dynamical equilibrium. At rather large depths under the ground, natural radioactivity associated with $$(\alpha,n)$$ reactions on light nuclei of the Earth’s crust is the main source of neutrons. Radioactive gaseous radon, especially its long-lived isotope $${}^{222}\textrm{Rn}$$, which is able to migrate over significant distances (several tens of meters in soil and several kilometers in the Earth’s atmosphere) plays a great role in this process. This means that the changes in the medium that are caused by various geophysical processes or by Moon–Solar–Earth phenomena should also be reflected in the neutron flux escaping from the Earth’s crust. The present article gives a brief survey of studies devoted to this subject and a discussion on them.
- Published
- 2022
3. Outstanding Achievements of the LHAASO Experiment in the Field of Ultra-High-Energy Gamma-Ray Astronomy
- Author
-
Yu. V. Stenkin
- Subjects
General Physics and Astronomy - Published
- 2022
4. Line-of-shower trigger method to lower energy threshold for GRB detection using LHAASO-WCDA
- Author
-
C. F. Feng, Bin Zhou, X. L. Ji, R. Lu, H. B. Xiao, J. R. Shi, W. Zeng, Z. H. Wang, Shengxue Zhang, Pak-Hin Thomas Tam, H. C. Li, Jun Liu, H. Y. Jia, B. D'Ettorre Piazzoli, W. X. Wu, Junjie Mao, Y. Q. Guo, Dong Liu, F. Ji, H. R. Wu, Y. J. Wei, Alejandro Sáiz, Oleg Shchegolev, L. Feng, V. Rulev, L. Xue, Xuliang Chen, Xing-Yuan Hou, D. M. Wei, S. Hu, M. L. Chen, Jianeng Zhou, J. Y. Liu, Warit Mitthumsiri, Y. Zhang, Q. An, Y. He, Q. Gao, Ruizhi Yang, X. N. Sun, H. B. Hu, H. Liu, L. Chen, X. G. Wang, S. Q. Xi, J. Fang, X. H. You, Ping Zhou, Z. C. Huang, Y. Z. Li, P. F. Zhang, C. Y. Wu, Hong-Guang Wang, G. M. Xiang, W. Liu, Yu-Lei Chen, Zihuang Cao, X. C. Chang, Z. K. Zeng, Y. J. Bi, H. D. Liu, Y. D. Cheng, Bo Zhang, Y. Zheng, L. Q. Yin, Duo Yan, F. Zheng, Hao Zhou, X. X. Zhou, Q. Yuan, Hefan Li, J. F. Chang, Z. X. Liu, Felix Aharonian, H. N. He, C. D. Gao, Lei Zhao, Q. H. Chen, Youping Li, Y. M. Ye, B. B. Li, Yongchun Wang, Y. D. Cui, Bai Yibing, L. P. Wang, J. B. Zhao, Y. J. Wang, J. Y. Yang, S. Z. Chen, Yunchao Liu, B. Z. Dai, Rong Xu, Z. X. Fan, Z. Y. You, Z. G. Dai, X. F. Wu, He Zhang, S. H. Feng, S. B. Yang, J. J. Xia, W. Gao, S. L. He, Y. P. Wang, B. M. Chen, Fan Yang, A. Masood, Kun Fang, S.H. Chen, Yugang Zhang, H. Cai, Lang Shao, H. Wang, J.W. Xia, L. Z. Zhao, G. C. Xiao, X. X. Zhai, Y. C. Nan, Shi-Qi Hu, X. J. Bi, Z. Li, R. Liu, E. W. Liang, X. Zuo, M. J. Yang, Y. H. Yao, W. L. Li, L. X. Zhang, H. K. Lv, Xufang Li, B. Y. Pang, Zebo Tang, M. H. Gu, Z. Y. Pei, Xuejiao Li, F. R. Zhu, T. L. Chen, Qie Sun, K. J. Zhu, Ying Zhang, H. M. Zhang, J. Chen, H. L. Dai, Y. L. Xin, T. Wen, S. W. Cui, M. Zha, J. C. He, W. H. Huang, L. X. Bai, Binyu Zhao, Yun-Feng Liang, Jixia Li, X. H. Cui, Xinbo He, K. Jiang, X. J. Hu, J. W. Zhang, Li-Sheng Geng, Wenwu Tian, Z. X. Wang, Xiaofei Zhang, David Ruffolo, Yu. V. Stenkin, C. Hou, Z. B. Sun, Shuibin Lin, Lu Zhang, K. Levochkin, Cheng Guang Zhu, X. D. Sheng, Minghao Qi, Houdun Zeng, Jun-Jie Wei, Jia Zhang, Y. A. Han, H. B. Li, Danzengluobu, Rui Zhang, H. C. Song, Linbin Yang, Y. Z. Fan, J. T. Cai, H. H. He, Y. M. Xing, F. Y. Li, D. H. Huang, H. Zhu, Xiang Zhang, M. M. Ge, J. G. Guo, S. R. Zhang, N. Cheng, L. L. Ma, G. H. Gong, J. S. Wang, Cunguo Wang, Shujuan Liu, N. Yin, Y. H. Yu, W. J. Long, Axikegu, Xuelong Wang, P. P. Zhang, Chunlong Li, Minghui Liu, D. Bastieri, Jinyao Liu, Z. G. Yao, X. H. Ma, M. Heller, K. Li, Z. J. Jiang, J. Liu, R. N. Wang, V. I. Stepanov, Jian Wang, Chiming Jin, D.A. Kuleshov, G. G. Xin, M. J. Chen, S. P. Zhao, Y. Y. Guo, Donglian Xu, X. L. Guo, X. J. Dong, Y. K. Hor, T. Montaruli, Y. L. Feng, W. Wang, P. Pattarakijwanich, S. Wu, B. D. Wang, C. X. Liu, Y. W. Bao, X. T. Huang, R. Zhou, L. Y. Wang, D. della Volpe, C. W. Yang, Jun-Hui Fan, Zujian Wang, Q. B. Gou, Qizhi Huang, B. Liu, Bingshui Gao, Xiang-Yu Wang, Tao Zeng, and Bin Ma
- Subjects
Physics ,Nuclear and High Energy Physics ,Cherenkov detector ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Astrophysics ,law.invention ,Air shower ,Nuclear Energy and Engineering ,Duty cycle ,law ,Observatory ,Gamma-ray burst ,Energy (signal processing) ,Line (formation) - Abstract
Observation of high energy and very high emission from Gamma Ray Bursts (GRBs) is crucial to study the gigantic explosion and the underline processes. With a large field-of-view and almost full duty cycle, the Water Cherenkov Detector Array (WCDA), a sub-array of the Large High Altitude Air Shower Observatory (LHAASO), is appropriate to monitor the very high energy emission from unpredictable transients such as GRBs. Nevertheless, the main issue for an extensive air shower array is the high energy threshold which limits the horizon of the detector. To address this issue a new trigger method is developed in this article to lower the energy threshold of WCDA for GRB observation. The proposed method significantly improves the detection efficiency of WCDA for gamma-rays around the GRB direction at 10-300 GeV. The sensitivity of the WCDA for GRB detection with the new trigger method is estimated. The achieved sensitivity of the quarter WCDA array above 10 GeV is comparable with that of Fermi-LAT. The data analysis process and corresponding fluence upper limit for GRB 190719C is presented as an example.
- Published
- 2021
5. Study of Environmental Thermal Neutron Fluxes: from EAS to Geophysics
- Author
-
Yu. V. Stenkin
- Subjects
Nuclear and High Energy Physics ,Atomic and Molecular Physics, and Optics - Published
- 2021
6. Electron–Neutron Detector Array (ENDA)
- Author
-
Bing-Bing Li, Shu-Wang Cui, Cong Shi, Fan Yang, Liang-Wei Zhang, Ye Liu, Xin-Hua Ma, Wei Gao, Li-Qiao Yin, Yu. V. Stenkin, D. A. Kuleshov, K. R. Levochkin, O. B. Shchegolev, Tian-Lu Chen, null Danzengluobu, Mao-Yuan Liu, and Di-Xuan Xiao
- Subjects
Nuclear and High Energy Physics ,Atomic and Molecular Physics, and Optics - Published
- 2021
7. A dynamic range extension system for LHAASO WCDA-1
- Author
-
F. Aharonian, Q. An, null Axikegu, L. X. Bai, Y. X. Bai, Y. W. Bao, D. Bastieri, X. J. Bi, Y. J. Bi, H. Cai, J. T. Cai, Z. Cao, J. Chang, J. F. Chang, X. C. Chang, B. M. Chen, J. Chen, L. Chen, M. J. Chen, M. L. Chen, Q. H. Chen, S. H. Chen, S. Z. Chen, T. L. Chen, X. L. Chen, Y. Chen, N. Cheng, Y. D. Cheng, S. W. Cui, X. H. Cui, Y. D. Cui, B. Z. Dai, H. L. Dai, Z. G. Dai, null Danzengluobu, D. della Volpe, B. D’Ettorre Piazzoli, X. J. Dong, J. H. Fan, Y. Z. Fan, Z. X. Fan, J. Fang, K. Fang, C. F. Feng, L. Feng, S. H. Feng, Y. L. Feng, B. Gao, C. D. Gao, Q. Gao, W. Gao, M. M. Ge, L. S. Geng, G. H. Gong, Q. B. Gou, M. H. Gu, J. G. Guo, X. L. Guo, Y. Q. Guo, Y. Y. Guo, Y. A. Han, H. H. He, H. N. He, J. C. He, S. L. He, X. B. He, Y. He, M. Heller, Y. K. Hor, C. Hou, X. Hou, H. B. Hu, S. Hu, S. C. Hu, X. J. Hu, D. H. Huang, Q. L. Huang, W. H. Huang, X. T. Huang, Y. Huang, Z. C. Huang, F. Ji, X. L. Ji, H. Y. Jia, K. Jiang, Z. J. Jiang, C. Jin, D. Kuleshov, K. Levochkin, B. B. Li, C. Li, F. Li, H. B. Li, H. C. Li, H. Y. Li, J. Li, K. Li, W. L. Li, X. Li, X. R. Li, Y. Li, Y. Z. Li, Z. Li, E. W. Liang, Y. F. Liang, S. J. Lin, B. Liu, C. Liu, D. Liu, H. Liu, H. D. Liu, J. Liu, J. L. Liu, J. S. Liu, J. Y. Liu, M. Y. Liu, R. Y. Liu, S. M. Liu, W. Liu, Y. N. Liu, Z. X. Liu, W. J. Long, R. Lu, H. K. Lv, B. Q. Ma, L. L. Ma, X. H. Ma, J. R. Mao, A. Masood, W. Mitthumsiri, T. Montaruli, Y. C. Nan, B. Y. Pang, P. Pattarakijwanich, Z. Y. Pei, M. Y. Qi, D. Ruffolo, V. Rulev, A. Sáiz, L. Shao, O. Shchegolev, X. D. Sheng, J. R. Shi, H. C. Song, Yu. V. Stenkin, V. Stepanov, Q. N. Sun, X. N. Sun, Z. B. Sun, P. H. T. Tam, Z. B. Tang, W. W. Tian, B. D. Wang, C. Wang, H. Wang, H. G. Wang, J. C. Wang, J. S. Wang, L. P. Wang, L. Y. Wang, R. N. Wang, W. Wang, X. G. Wang, X. J. Wang, X. Y. Wang, Y. D. Wang, Y. J. Wang, Y. P. Wang, Z. Wang, Z. H. Wang, Z. X. Wang, D. M. Wei, J. J. Wei, Y. J. Wei, T. Wen, C. Y. Wu, H. R. Wu, S. Wu, W. X. Wu, X. F. Wu, S. Q. Xi, J. Xia, J. J. Xia, G. M. Xiang, G. Xiao, H. B. Xiao, G. G. Xin, Y. L. Xin, Y. Xing, D. L. Xu, R. X. Xu, L. Xue, D. H. Yan, C. W. Yang, F. F. Yang, J. Y. Yang, L. L. Yang, M. J. Yang, R. Z. Yang, S. B. Yang, Y. H. Yao, Z. G. Yao, Y. M. Ye, L. Q. Yin, N. Yin, X. H. You, Z. Y. You, Y. H. Yu, Q. Yuan, H. D. Zeng, T. X. Zeng, W. Zeng, Z. K. Zeng, M. Zha, X. X. Zhai, B. B. Zhang, H. M. Zhang, H. Y. Zhang, J. L. Zhang, J. W. Zhang, L. Zhang, L. X. Zhang, P. F. Zhang, P. P. Zhang, R. Zhang, S. R. Zhang, S. S. Zhang, X. Zhang, X. P. Zhang, Y. Zhang, Y. F. Zhang, Y. L. Zhang, B. Zhao, J. Zhao, L. Zhao, L. Z. Zhao, S. P. Zhao, F. Zheng, Y. Zheng, B. Zhou, H. Zhou, J. N. Zhou, P. Zhou, R. Zhou, X. X. Zhou, C. G. Zhu, F. R. Zhu, H. Zhu, K. J. Zhu, and X. Zuo
- Subjects
Physics ,Nuclear and High Energy Physics ,Physics::Instrumentation and Detectors ,Dynamic range ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmic ray ,Extension (predicate logic) ,Measure (mathematics) ,Effective nuclear charge ,Nuclear physics ,Air shower ,Nuclear Energy and Engineering ,Orders of magnitude (time) ,Energy (signal processing) - Abstract
The main scientific goal of LHAASO-WCDA is to survey gamma-ray sources with energy from 100 GeV to 30 TeV. To observe high-energy shower events, especially to measure the energy spectrum of cosmic rays from 100 TeV to 10 PeV, a dynamic range extension system (WCDA++) is designed to use a 1.5-inch PMT with a dynamic range of four orders of magnitude for each cell in WCDA-1. The dynamic range is extended by using these PMTs to measure the effective charge density in the core region of air shower events, which is an important parameter for identifying the composition of primary particles. The system has been running for more than one year. In this paper, the details of the design and performance of WCDA++ are presented.
- Published
- 2021
8. Constraints on heavy decaying dark matter from 570 days of LHAASO observations
- Author
-
Zhen, Cao, F, Aharonian, Q, An, Axikegu, L X, Bai, Y X, Bai, Y W, Bao, D, Bastieri, X J, Bi, Y J, Bi, J T, Cai, Zhe, Cao, J, Chang, J F, Chang, E S, Chen, Liang, Chen, Long, Chen, M J, Chen, M L, Chen, Q H, Chen, S H, Chen, S Z, Chen, T L, Chen, Y, Chen, H L, Cheng, N, Cheng, Y D, Cheng, S W, Cui, X H, Cui, Y D, Cui, B, D'Ettorre Piazzoli, B Z, Dai, H L, Dai, Z G, Dai, Danzengluobu, D, Della Volpe, K K, Duan, J H, Fan, Y Z, Fan, Z X, Fan, J, Fang, K, Fang, C F, Feng, L, Feng, S H, Feng, X T, Feng, Y L, Feng, B, Gao, C D, Gao, L Q, Gao, Q, Gao, W, Gao, W K, Gao, M M, Ge, L S, Geng, G H, Gong, Q B, Gou, M H, Gu, F L, Guo, J G, Guo, X L, Guo, Y Q, Guo, Y Y, Guo, Y A, Han, H H, He, H N, He, S L, He, X B, He, Y, He, M, Heller, Y K, Hor, C, Hou, X, Hou, H B, Hu, Q, Hu, S, Hu, S C, Hu, X J, Hu, D H, Huang, W H, Huang, X T, Huang, X Y, Huang, Y, Huang, Z C, Huang, X L, Ji, H Y, Jia, K, Jia, K, Jiang, Z J, Jiang, M, Jin, M M, Kang, T, Ke, D, Kuleshov, K, Levochkin, B B, Li, Cheng, Li, Cong, Li, F, Li, H B, Li, H C, Li, H Y, Li, J, Li, Jian, Li, Jie, Li, K, Li, W L, Li, X R, Li, Xin, Li, Y Z, Li, Zhe, Li, Zhuo, Li, E W, Liang, Y F, Liang, S J, Lin, B, Liu, C, Liu, D, Liu, H, Liu, H D, Liu, J, Liu, J L, Liu, J S, Liu, J Y, Liu, M Y, Liu, R Y, Liu, S M, Liu, W, Liu, Y, Liu, Y N, Liu, W J, Long, R, Lu, Q, Luo, H K, Lv, B Q, Ma, L L, Ma, X H, Ma, J R, Mao, A, Masood, Z, Min, W, Mitthumsiri, Y C, Nan, Z W, Ou, B Y, Pang, P, Pattarakijwanich, Z Y, Pei, M Y, Qi, Y Q, Qi, B Q, Qiao, J J, Qin, D, Ruffolo, A, Sáiz, C Y, Shao, L, Shao, O, Shchegolev, X D, Sheng, J Y, Shi, H C, Song, Yu V, Stenkin, V, Stepanov, Y, Su, Q N, Sun, X N, Sun, Z B, Sun, P H T, Tam, Z B, Tang, W W, Tian, B D, Wang, C, Wang, H, Wang, H G, Wang, J C, Wang, J S, Wang, L P, Wang, L Y, Wang, R, Wang, R N, Wang, W, Wang, X G, Wang, X Y, Wang, Y, Wang, Y D, Wang, Y J, Wang, Y P, Wang, Z H, Wang, Z X, Wang, Zhen, Wang, Zheng, Wang, D M, Wei, J J, Wei, Y J, Wei, T, Wen, C Y, Wu, H R, Wu, S, Wu, X F, Wu, Y S, Wu, S Q, Xi, J, Xia, J J, Xia, G M, Xiang, D X, Xiao, G, Xiao, G G, Xin, Y L, Xin, Y, Xing, Z, Xiong, D L, Xu, R X, Xu, L, Xue, D H, Yan, J Z, Yan, C W, Yang, F F, Yang, H W, Yang, J Y, Yang, L L, Yang, M J, Yang, R Z, Yang, S B, Yang, Y H, Yao, Z G, Yao, Y M, Ye, L Q, Yin, N, Yin, X H, You, Z Y, You, Y H, Yu, Q, Yuan, H, Yue, H D, Zeng, T X, Zeng, W, Zeng, Z K, Zeng, M, Zha, X X, Zhai, B B, Zhang, F, Zhang, H M, Zhang, H Y, Zhang, J L, Zhang, L X, Zhang, Li, Zhang, Lu, Zhang, P F, Zhang, P P, Zhang, R, Zhang, S B, Zhang, S R, Zhang, S S, Zhang, X, Zhang, X P, Zhang, Y F, Zhang, Y L, Zhang, Yi, Zhang, Yong, Zhang, B, Zhao, J, Zhao, L, Zhao, L Z, Zhao, S P, Zhao, F, Zheng, Y, Zheng, B, Zhou, H, Zhou, J N, Zhou, P, Zhou, R, Zhou, X X, Zhou, C G, Zhu, F R, Zhu, H, Zhu, K J, Zhu, X, Zuo, S, Ando, M, Chianese, D F G, Fiorillo, G, Miele, K C Y, Ng, and GRAPPA (ITFA, IoP, FNWI)
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,High Energy Physics - Phenomenology ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,High Energy Physics - Phenomenology (hep-ph) ,General Physics and Astronomy ,FOS: Physical sciences ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The kilometer square array (KM2A) of the large high altitude air shower observatory (LHAASO) aims at surveying the northern γ-ray sky at energies above 10 TeV with unprecedented sensitivity. γ-ray observations have long been one of the most powerful tools for dark matter searches, as, e.g., high-energy γ rays could be produced by the decays of heavy dark matter particles. In this Letter, we present the first dark matter analysis with LHAASO-KM2A, using the first 340 days of data from 1/2-KM2A and 230 days of data from 3/4-KM2A. Several regions of interest are used to search for a signal and account for the residual cosmic-ray background after γ/hadron separation. We find no excess of dark matter signals, and thus place some of the strongest γ-ray constraints on the lifetime of heavy dark matter particles with mass between 105 and 109 GeV. Our results with LHAASO are robust, and have important implications for dark matter interpretations of the diffuse astrophysical high-energy neutrino emission.
- Published
- 2022
9. Variations in the Background Flux of Thermal Neutrons at Kamchatka
- Author
-
Yu. V. Stenkin, V. V. Alekseenko, D. A. Kuleshov, K. R. Levochkin, E. O. Makarov, P. P. Firstov, and O. B. Shchegolev
- Subjects
General Physics and Astronomy - Published
- 2022
10. Design and Testing of the Front-End Electronics of WCDA in LHAASO
- Author
-
F. Aharonian, Q. An, null Axikegu, L.X. Bai, Y.X. Bai, Y.W. Bao, D. Bastieri, X.J. Bi, Y.J. Bi, H. Cai, J.T. Cai, Z. Cao, J. Chang, J.F. Chang, X.C. Chang, B.M. Chen, J. Chen, L. Chen, M.J. Chen, M.L. Chen, Q.H. Chen, S.H. Chen, S.Z. Chen, T.L. Chen, X.L. Chen, Y. Chen, N. Cheng, Y.D. Cheng, S.W. Cui, X.H. Cui, Y.D. Cui, B.Z. Dai, H.L. Dai, Z.G. Dai, null Danzengluobu, R.S. Dong, X.J. Dong, J.H. Fan, Y.Z. Fan, Z.X. Fan, J. Fang, K. Fang, C.F. Feng, L. Feng, S.H. Feng, Y.L. Feng, B. Gao, C.D. Gao, Q. Gao, W. Gao, M.M. Ge, L.S. Geng, G.H. Gong, Q.B. Gou, J.L. Gu, M.H. Gu, J.G. Guo, X.L. Guo, Y.Q. Guo, Y.Y. Guo, Y.A. Han, H.H. He, H.N. He, J.C. He, S.L. He, X.B. He, Y. He, Z.Q. He, M. Heller, Y.K. Hor, C. Hou, X. Hou, H.B. Hu, S. Hu, S.C. Hu, X.J. Hu, D.H. Huang, Q.L. Huang, W.H. Huang, X.T. Huang, Z.C. Huang, F. Ji, X.L. Ji, H.Y. Jia, K. Jiang, Z.J. Jiang, C. Jin, D. Kuleshov, K. Levochkin, B.B. Li, C. Li, F. Li, H.B. Li, H.C. Li, H.Y. Li, J. Li, K. Li, W.L. Li, X. Li, X.R. Li, Y. Li, Y.Z. Li, Z. Li, E.W. Liang, Y.F. Liang, S.J. Lin, B. Liu, C. Liu, D. Liu, H. Liu, H.D. Liu, J. Liu, J.L. Liu, J.S. Liu, J.Y. Liu, M.Y. Liu, R.Y. Liu, S.M. Liu, W. Liu, Y.N. Liu, Z.X. Liu, W.J. Long, R. Lu, H.K. Lv, B.Q. Ma, L.L. Ma, X.H. Ma, J.R. Mao, A. Masood, W. Mitthumsiri, T. Montaruli, Y.C. Nan, B.Y. Pang, P. Pattarakijwanich, Z.Y. Pei, B.D. Piazzoli, M.Y. Qi, J.J. Qin, D. Ruffolo, V. Rulev, A. Saiz, L. Shao, O. Shchegolev, X.D. Sheng, J.R. Shi, C.X. Song, H.C. Song, Yu. V. Stenkin, V. Stepanov, Q.N. Sun, X.N. Sun, Z.B. Sun, P.H.T. Tam, Z.B. Tang, W.W. Tian, D. della Volpe, B.D. Wang, C. Wang, H. Wang, H.G. Wang, J.C. Wang, J.S. Wang, L.P. Wang, L.Y. Wang, R.N. Wang, W. Wang, X.G. Wang, X.J. Wang, X.Y. Wang, Y.D. Wang, Y.J. Wang, Y.P. Wang, Z. Wang, Z.H. Wang, Z.X. Wang, D.M. Wei, J.J. Wei, Y.J. Wei, T. Wen, C.Y. Wu, H.R. Wu, S. Wu, W.X. Wu, X.F. Wu, S.Q. Xi, J. Xia, J.J. Xia, G.M. Xiang, G. Xiao, H.B. Xiao, G.G. Xin, Y.L. Xin, Y. Xing, D.L. Xu, R.X. Xu, L. Xue, D.H. Yan, X.B. Yan, C.W. Yang, F.F. Yang, J.Y. Yang, L.L. Yang, M.J. Yang, R.Z. Yang, S.B. Yang, Y.H. Yao, Z.G. Yao, Y.M. Ye, L.Q. Yin, N. Yin, X.H. You, Z.Y. You, Y.H. Yu, Q. Yuan, H.D. Zeng, T.X. Zeng, W. Zeng, Z.K. Zeng, M. Zha, X.X. Zhai, B.B. Zhang, H.M. Zhang, H.Y. Zhang, J.L. Zhang, J.W. Zhang, L. Zhang, L.X. Zhang, P.F. Zhang, P.P. Zhang, R. Zhang, S.R. Zhang, S.S. Zhang, X. Zhang, X.P. Zhang, Y. Zhang, Y.F. Zhang, Y.L. Zhang, B. Zhao, J. Zhao, L. Zhao, L.Z. Zhao, S.P. Zhao, F. Zheng, Y. Zheng, B. Zhou, H. Zhou, J.N. Zhou, P. Zhou, R. Zhou, S.Z. Zhou, X.X. Zhou, C.G. Zhu, F.R. Zhu, H. Zhu, K.J. Zhu, and X. Zuo
- Subjects
Nuclear and High Energy Physics ,Photomultiplier ,Dynamic range ,Cherenkov detector ,Detector ,law.invention ,Root mean square ,Air shower ,Nuclear Energy and Engineering ,Observatory ,law ,Environmental science ,Electronics ,Electrical and Electronic Engineering ,Remote sensing - Abstract
Water Cherenkov detector array (WCDA) is one of the key parts of the Large High Altitude Air Shower Observatory (LHAASO), the construction of which was completed by the end of 2020. The WCDA covers a 78 000-m2 area and there exist 3120 large size photomultiplier tubes (PMTs) in three ponds: 8-in PMTs are used in WCDA pond No. 1 and 20-in PMTs are used in ponds No. 2 and No. 3. The front-end electronics (FEE) system based on multigain measurement technique is designed to achieve both high-precision time and charge measurements over a large dynamic range from single photon electron (S.P.E.) to 4000 P.E. (for water pond No. 1)/1800 P.E. (for water ponds No. 2 and No. 3). To achieve a high-quality clock distribution and phase alignment as well as mixed transmission of data, clock, and commands in one fiber over a long distance, an enhanced white rabbit (WR) technique is used. Testing of all the 350 FEE modules for the WCDA is presented in this article. Test results indicate that the charge resolution is better than 20% at S.P.E. and 1% at 1800/4000 P.E. and the time resolution is better than 300 ps root mean square (rms), which successfully meets the application requirement. All the FEE modules have been fabricated and installed for the LHAASO WCDA from 2018 to 2020, and the initial commissioning operation indicates that the FEEs function well.
- Published
- 2021
11. Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources
- Author
-
Alejandro Sáiz, Y. H. Yao, W. X. Wu, P. P. Zhang, Zhuo Li, R. Liu, Pak-Hin Thomas Tam, H. C. Li, Liang Chen, J. C. Wang, Y. L. Xin, L. Chen, M. J. Chen, Hong-Guang Wang, Y. J. Wei, S. Hu, Junjie Mao, Y. Q. Guo, J. Y. Liu, V. Rulev, P. F. Zhang, L. Xue, H. B. Hu, H. Liu, Rui Zhang, Linbin Yang, C. F. Feng, F. Ji, Xiaofei Zhang, F. Zheng, V. I. Stepanov, Ping Zhou, Q. H. Chen, H. R. Wu, Warit Mitthumsiri, X. C. Chang, Z. K. Zeng, C. D. Gao, Bin Zhou, W. L. Li, S. Z. Chen, M. M. Ge, Lei Zhao, Y. Z. Li, Y. Y. Guo, Y. J. Bi, Zhe Cao, Y. K. Hor, Xuejiao Li, H. D. Liu, S. H. Feng, B. Liu, Y. D. Cheng, Bo Zhang, H. K. Lv, H. M. Zhang, K. Levochkin, Y. J. Wang, L. X. Bai, Jixia Li, T. Montaruli, Duo Yan, Hefan Li, Ying Zhang, Bingshui Gao, Q. An, H. B. Xiao, J. R. Shi, X. D. Sheng, Z. X. Liu, W. H. Huang, M. L. Chen, Jianeng Zhou, Q. Gao, Minghao Qi, W. Zeng, Li-Sheng Geng, J. Chen, B. M. Chen, T. Wen, S. W. Cui, Z. X. Wang, Chiming Jin, S. B. Yang, L. Z. Zhao, C. W. Yang, J. B. Zhao, D.A. Kuleshov, Y. M. Xing, L. P. Wang, E. W. Liang, X. F. Wu, Zhe Li, B. Y. Pang, B. B. Li, X. Zuo, Cong Li, S. Q. Xi, Kun Fang, W. Gao, B. Z. Dai, Z. H. Wang, H. Cai, Jun Liu, Zhen Wang, J. C. He, Houdun Zeng, J. Fang, G. C. Xiao, Y. C. Nan, Z. G. Yao, Z. Y. Pei, Jun-Hui Fan, X. X. Zhou, Q. Yuan, H. B. Li, Shi-Qi Hu, G. G. Xin, J. F. Chang, Xufang Li, Oleg Shchegolev, G. M. Xiang, S. P. Zhao, W. Liu, X. L. Ji, M. J. Yang, H. H. He, R. Lu, Zhengguo Cao, Felix Aharonian, J. W. Zhang, H. C. Song, Yongchun Wang, Yugang Zhang, Wenwu Tian, He Zhang, Bai Yibing, S. L. He, Donglian Xu, Y. L. Feng, Zebo Tang, X. L. Guo, Y. D. Cui, X. J. Dong, Zheng Wang, Jun-Jie Wei, Q. B. Gou, Qizhi Huang, H. N. He, K. J. Zhu, M. Zha, B. D. Wang, Ruizhi Yang, X. N. Sun, Y. P. Wang, Z. C. Huang, H. L. Dai, H. Wang, Xiang Zhang, Xing-Yuan Hou, Yunchao Liu, H. Y. Jia, D. M. Wei, Z. G. Dai, Rong Xu, Fan Yang, A. Masood, F. Y. Li, Xinbo He, Youping Li, X. T. Huang, L. Y. Wang, X. R. Li, J. J. Xia, K. Jiang, Binyu Zhao, X. J. Hu, Yun-Feng Liang, W. Wang, Y. A. Han, J. G. Guo, Yu. V. Stenkin, Lang Shao, J.W. Xia, P. Pattarakijwanich, X. H. You, S.H. Chen, S. R. Zhang, C. Hou, Shuibin Lin, Lu Zhang, L. Feng, Xuelong Wang, S. Wu, X. X. Zhai, Xuliang Chen, C. X. Liu, L. L. Ma, Y. He, Z. X. Fan, Z. Y. You, F. R. Zhu, Y. W. Bao, Qie Sun, Yi Chen, X. G. Wang, Yi Zhang, Xiang-Yu Wang, D. H. Huang, R. Zhou, Hao Zhou, H. Zhu, X. J. Bi, D. della Volpe, Tao Zeng, T. L. Chen, Bin Ma, J. S. Wang, Cunguo Wang, L. X. Zhang, Shujuan Liu, N. Yin, N. Cheng, D. Bastieri, X. H. Cui, Cheng Li, W. J. Long, Shengxue Zhang, Axikegu, Li Zhang, G. H. Gong, Danzengluobu, M. H. Gu, Y. H. Yu, Jie Zhang, Y. Z. Fan, Dong Liu, C. Y. Wu, J. T. Cai, Long Chen, Y. Zheng, L. Q. Yin, Y. M. Ye, J. Y. Yang, B D Ettorre Piazzoli, David Ruffolo, Z. B. Sun, Cheng Guang Zhu, X. H. Ma, M. Heller, K. Li, Z. J. Jiang, J. Liu, Yong Zhang, Minghui Liu, R. N. Wang, and Jinyao Liu
- Subjects
Physics ,Multidisciplinary ,Photon ,COSMIC cancer database ,Proton ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Electron ,Astrophysics ,01 natural sciences ,Galaxy ,Supernova ,Crab Nebula ,Pulsar ,0103 physical sciences ,010306 general physics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
The extension of the cosmic-ray spectrum beyond 1 petaelectronvolt (PeV; 1015 electronvolts) indicates the existence of the so-called PeVatrons—cosmic-ray factories that accelerate particles to PeV energies. We need to locate and identify such objects to find the origin of Galactic cosmic rays1. The principal signature of both electron and proton PeVatrons is ultrahigh-energy (exceeding 100 TeV) γ radiation. Evidence of the presence of a proton PeVatron has been found in the Galactic Centre, according to the detection of a hard-spectrum radiation extending to 0.04 PeV (ref. 2). Although γ-rays with energies slightly higher than 0.1 PeV have been reported from a few objects in the Galactic plane3–6, unbiased identification and in-depth exploration of PeVatrons requires detection of γ-rays with energies well above 0.1 PeV. Here we report the detection of more than 530 photons at energies above 100 teraelectronvolts and up to 1.4 PeV from 12 ultrahigh-energy γ-ray sources with a statistical significance greater than seven standard deviations. Despite having several potential counterparts in their proximity, including pulsar wind nebulae, supernova remnants and star-forming regions, the PeVatrons responsible for the ultrahigh-energy γ-rays have not yet been firmly localized and identified (except for the Crab Nebula), leaving open the origin of these extreme accelerators. Observations of γ-rays with energies up to 1.4 PeV find that 12 sources in the Galaxy are PeVatrons, one of which is the Crab Nebula.
- Published
- 2021
12. Underground Physics and the Nonlinear Delayed Barometric Effect of the Gamma-Ray Background
- Author
-
V. I. Stepanov, D.A. Kuleshov, Oleg Shchegolev, V. V. Rulev, Victor Alekseenko, V. P. Sulakov, K. R. Levochkin, Yu. V. Stenkin, and A. V. Igoshin
- Subjects
Physics ,Solid-state physics ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Gamma ray ,General Physics and Astronomy ,Scintillator ,complex mixtures ,01 natural sciences ,Computational physics ,Crystal ,Low-pressure area ,Nonlinear system ,0103 physical sciences ,Underground laboratory ,High Energy Physics::Experiment ,010306 general physics - Abstract
The gamma-ray background problem is known to be acute in any low-background underground experiment. The variations of this background depend on many parameters and should be taken into account when interpreting the results of experiments combined under the term “underground physics”. This paper is devoted to studying the long-term variations of the gamma-ray background in an underground laboratory with a scintillation detector based on a CsI crystal. Our studies have revealed a new effect in underground physics—a delayed nonlinear pumping effect for the gamma-ray background in an underground room that can lead to a significant rise of this background at an anomalously low atmospheric pressure.
- Published
- 2020
13. First Measurements with the ENDA-INR Array of 16 Electron–Neutron Detectors
- Author
-
Oleg Shchegolev, Yu. V. Stenkin, K. R. Levochkin, D.A. Kuleshov, and Victor Alekseenko
- Subjects
010302 applied physics ,Physics ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,General Physics and Astronomy ,Electron ,01 natural sciences ,Optics ,Data acquisition ,Observatory ,0103 physical sciences ,Calibration ,Neutron detection ,Neutron ,Detector array ,Nuclear Experiment ,business - Abstract
The ENDA Electron–Neutron Detector Array is under development in Tibet mountains as an integral part of a Large High-Altitude Air-Shower Observatory (LHAASO). A prototype of a single ENDA cluster consisting of 16 electron–neutron detectors has been constructed at the Moscow Institute for Nuclear Research (INR) and is used to study extensive air showers with energies above 1 PeV. A new procedure for data acquisition (DAQ) that relies on a 32-bit analog–digital converter (ADC) is used in these measurements. Calibration with radioactive sources shows that the DAQ procedure correctly selects neutron hits. Extensive air showers are detected in parallel with measuring variations of the thermal-neutron background.
- Published
- 2021
14. Status of the High-Altitude ENDA-LHAASO Array
- Author
-
Di-Xuan Xiao, Cong Shi, Victor Alekseenko, Ye Liu, Bing-Bing Li, Mao-Yuan Liu, Yu. V. Stenkin, Fan Yang, Xinhua Ma, Danzengluobu, Tian-Lu Chen, Shuwang Cui, K. R. Levochkin, D.A. Kuleshov, Liang-wei Zhang, and Oleg Shchegolev
- Subjects
010302 applied physics ,Physics ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,General Physics and Astronomy ,Effects of high altitude on humans ,01 natural sciences ,Altitude ,Feature (computer vision) ,0103 physical sciences ,High Energy Physics::Experiment ,Detector array ,Sea level ,Remote sensing - Abstract
A description is given of the ENDA (electron–neutron detector array) setup launched as part of the international LHAASO project in December 2019 in Tibet at an altitude of 4410 m above sea level. A unique feature of the ENDA is its simultaneous recording of two main components of extensive air showers (hadronic and electronic) over whole array using the same detectors. The main parameters of the array obtained from calculations and measurements are presented.
- Published
- 2021
15. Construction and on-site performance of the LHAASO WFCTA camera
- Author
-
F. Aharonian, Q. An, Axikegu, L. X. Bai, Y. X. Bai, Y. W. Bao, D. Bastieri, X. J. Bi, Y. J. Bi, H. Cai, J. T. Cai, Z. Cao, J. Chang, J. F. Chang, X. C. Chang, B. M. Chen, J. Chen, L. Chen, M. J. Chen, M. L. Chen, Q. H. Chen, S. H. Chen, S. Z. Chen, T. L. Chen, X. L. Chen, Y. Chen, N. Cheng, Y. D. Cheng, S. W. Cui, X. H. Cui, Y. D. Cui, B. Z. Dai, H. L. Dai, Z. G. Dai, Danzengluobu, D. della Volpe, B. D’Ettorre Piazzoli, X. J. Dong, J. H. Fan, Y. Z. Fan, Z. X. Fan, J. Fang, K. Fang, C. F. Feng, L. Feng, S. H. Feng, Y. L. Feng, B. Gao, C. D. Gao, Q. Gao, W. Gao, M. M. Ge, L. S. Geng, G. H. Gong, Q. B. Gou, M. H. Gu, J. G. Guo, X. L. Guo, Y. Q. Guo, Y. Y. Guo, Y. A. Han, H. H. He, H. N. He, J. C. He, S. L. He, X. B. He, Y. He, M. Heller, Y. K. Hor, C. Hou, X. Hou, H. B. Hu, S. Hu, S. C. Hu, X. J. Hu, D. H. Huang, Q. L. Huang, W. H. Huang, X. T. Huang, Z. C. Huang, F. Ji, X. L. Ji, H. Y. Jia, K. Jiang, Z. J. Jiang, C. Jin, D. Kuleshov, K. Levochkin, B. B. Li, C. Li, F. Li, H. B. Li, H. C. Li, H. Y. Li, J. Li, K. Li, W. L. Li, X. Li, X. R. Li, Y. Li, Y. Z. Li, Z. Li, E. W. Liang, Y. F. Liang, S. J. Lin, B. Liu, C. Liu, D. Liu, H. Liu, H. D. Liu, J. Liu, J. L. Liu, J. S. Liu, J. Y. Liu, M. Y. Liu, R. Y. Liu, S. M. Liu, W. Liu, Y. N. Liu, Z. X. Liu, W. J. Long, R. Lu, H. K. Lv, B. Q. Ma, L. L. Ma, X. H. Ma, J. R. Mao, A. Masood, W. Mitthumsiri, T. Montaruli, Y. C. Nan, B. Y. Pang, P. Pattarakijwanich, Z. Y. Pei, M. Y. Qi, D. Ruffolo, V. Rulev, A. Sáiz, L. Shao, O. Shchegolev, X. D. Sheng, J. R. Shi, H. C. Song, Yu. V. Stenkin, V. Stepanov, Q. N. Sun, X. N. Sun, Z. B. Sun, P. H. T. Tam, Z. B. Tang, W. W. Tian, B. D. Wang, C. Wang, H. Wang, H. G. Wang, J. C. Wang, J. S. Wang, L. P. Wang, L. Y. Wang, R. N. Wang, W. Wang, X. G. Wang, X. J. Wang, X. Y. Wang, Y. D. Wang, Y. J. Wang, Y. P. Wang, Z. Wang, Z. H. Wang, Z. X. Wang, D. M. Wei, J. J. Wei, Y. J. Wei, T. Wen, C. Y. Wu, H. R. Wu, S. Wu, W. X. Wu, X. F. Wu, S. Q. Xi, J. Xia, J. J. Xia, G. M. Xiang, G. Xiao, H. B. Xiao, G. G. Xin, Y. L. Xin, Y. Xing, D. L. Xu, R. X. Xu, L. Xue, D. H. Yan, C. W. Yang, F. F. Yang, J. Y. Yang, L. L. Yang, M. J. Yang, R. Z. Yang, S. B. Yang, Y. H. Yao, Z. G. Yao, Y. M. Ye, L. Q. Yin, N. Yin, X. H. You, Z. Y. You, Y. H. Yu, Q. Yuan, H. D. Zeng, T. X. Zeng, W. Zeng, Z. K. Zeng, M. Zha, X. X. Zhai, B. B. Zhang, H. M. Zhang, H. Y. Zhang, J. L. Zhang, J. W. Zhang, L. Zhang, L. X. Zhang, P. F. Zhang, P. P. Zhang, R. Zhang, S. R. Zhang, S S. Zhang, X. Zhang, X. P. Zhang, Y. Zhang, Y. F. Zhang, Y. L. Zhang, B. Zhao, J. Zhao, L. Zhao, L. Z. Zhao, S. P. Zhao, F. Zheng, Y. Zheng, B. Zhou, H. Zhou, J. N. Zhou, P. Zhou, R. Zhou, X. X. Zhou, C. G. Zhu, F. R. Zhu, H. Zhu, K. J. Zhu, X. Zuo, and The LHAASO Collaboration
- Subjects
Photomultiplier ,Physics - Instrumentation and Detectors ,Physics and Astronomy (miscellaneous) ,FOS: Physical sciences ,QC770-798 ,Astrophysics ,01 natural sciences ,High Energy Physics - Experiment ,law.invention ,Telescope ,High Energy Physics - Experiment (hep-ex) ,Silicon photomultiplier ,Optics ,Observatory ,law ,Nuclear and particle physics. Atomic energy. Radioactivity ,0103 physical sciences ,010306 general physics ,Engineering (miscellaneous) ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Cherenkov radiation ,Physics ,010308 nuclear & particles physics ,business.industry ,Instrumentation and Detectors (physics.ins-det) ,Avalanche photodiode ,Cherenkov Telescope Array ,QB460-466 ,Air shower ,Astrophysics - Instrumentation and Methods for Astrophysics ,business - Abstract
The focal plane camera is the core component of the Wide Field-of-view Cherenkov/fluorescence Telescope Array (WFCTA) of the Large High-Altitude Air Shower Observatory (LHAASO). Because of the capability of working under moonlight without aging, silicon photomultipliers (SiPM) have been proven to be not only an alternative but also an improvement to conventional photomultiplier tubes (PMT) in this application. Eighteen SiPM-based cameras with square light funnels have been built for WFCTA. The telescopes have collected more than 100 million cosmic ray events and preliminary results indicate that these cameras are capable of working under moonlight. The characteristics of the light funnels and SiPMs pose challenges (e.g. dynamic range, dark count rate, assembly techniques). In this paper, we present the design features, manufacturing techniques and performances of these cameras. Finally, the test facilities, the test methods and results of SiPMs in the cameras are reported here., Comment: 45 pages, 21 figures, article
- Published
- 2021
16. Discovery of a new $\gamma$-ray source LHAASO J0341+5258 with emission up to 200TeV
- Author
-
Zhengguo Cao, L. Feng, Xufang Li, Zebo Tang, Jun-Jie Wei, C. Y. Wu, Jia Zhang, L. X. Bai, Yi Zhang, H. K. Lv, Jixia Li, L. L. Yang, Z. X. Wang, M. Zha, Y. M. Ye, X. H. Ma, L. P. Wang, X. G. Wang, Donglian Xu, X. L. Guo, Y. A. Han, Binyu Zhao, Yun-Feng Liang, Houdun Zeng, Zhe Li, Y. Su, B. Z. Dai, Z. G. Dai, Jinmei Liu, B. D'Ettorre Piazzoli, Z. G. Yao, Y. Zheng, W. X. Wu, M. L. Chen, Jianeng Zhou, Hefan Li, W. Wang, P. Pattarakijwanich, Rong Xu, J. J. Xia, X. X. Zhai, J. Fang, F. R. Zhu, Qie Sun, Yi Chen, H. B. Li, G. M. Xiang, W. Liu, B. Y. Pang, S. Wu, X. L. Ji, R. Lu, K. Li, Y. J. Bi, H. D. Liu, Y. D. Cheng, Bo Zhang, L. Q. Yin, Hanzhong Zhang, C. X. Liu, D. della Volpe, Y. D. Cui, Kun Fang, Yugang Zhang, E. W. Liang, Ping Zhou, Z. J. Jiang, Y. J. Wei, J. Liu, Yong Zhang, Duo Yan, Yu. V. Stenkin, S. L. He, Y. P. Wang, Z. X. Liu, D. H. Huang, R. N. Wang, S. M. Liu, F. Ji, V. Rulev, Y. Z. Li, H. H. He, H. Zhu, C. Hou, Zheng Wang, B. Q. Ma, Y. C. Nan, L. Xue, Jun Liu, Lu Zhang, H. Y. Jia, D. M. Wei, V. I. Stepanov, E. S. Chen, Sina Chen, K. J. Zhu, Y. Q. Qi, Fulai Guo, J. Y. Shi, Minghui Liu, Yi Liu, J. B. Zhao, H. Wang, X. F. Wu, Zhen Wang, Z. X. Fan, Z. Y. You, Shi-Qi Hu, J. Y. Yang, N. Cheng, Z. K. Zeng, C. D. Gao, X. H. You, Long Gao, H. C. Song, Lei Zhao, D.A. Kuleshov, X. X. Zhou, Q. Yuan, B. M. Chen, Ruizhi Yang, X. N. Sun, Shengxue Zhang, Danzengluobu, J. F. Chang, S. P. Zhao, H. Liu, J.W. Xia, W. Gao, G. C. Xiao, Felix Aharonian, Xinbo He, K. Jiang, Pak-Hin Thomas Tam, H. C. Li, Y. Wang, Y. Z. Fan, Dong Liu, Y. W. Bao, P. F. Zhang, X. J. Bi, H. N. He, T. L. Chen, L. Z. Zhao, X. J. Hu, R. Zhou, Ying Zhang, Oleg Shchegolev, Junjie Mao, Y. Q. Guo, F. Y. Li, K. Levochkin, J. T. Cai, X. D. Sheng, Cong Li, X. Zuo, B. B. Li, Long Chen, Yunchao Liu, H. L. Dai, T. Wen, S. W. Cui, S. Z. Chen, David Ruffolo, Y. M. Xing, H. R. Wu, Liang Chen, Xiang-Kun Dong, S. Hu, J. Y. Liu, X. Y. Huang, P. P. Zhang, X. H. Cui, Minghao Qi, Z. B. Sun, Y. Bai, Z. Y. Pei, Cheng Guang Zhu, Yuan-Hao Wang, Zhuo Li, Warit Mitthumsiri, H. M. Zhang, Q. An, Y. H. Yao, W. H. Huang, H. Zhou, W. J. Long, Binbin Zhou, Li-Sheng Geng, R. Liu, Xiang Zhang, J. G. Guo, J. W. Zhang, S. R. Zhang, Wenwu Tian, L. L. Ma, Q. Gao, C. F. Feng, Jiangang He, J. S. Wang, Cunguo Wang, Y. L. Xin, Z. C. Huang, H. B. Hu, N. Yin, B. Q. Qiao, Xin Li, Cheng Li, Jiajun Qin, M. H. Gu, Boyang Wang, Rui Zhang, H. B. Xiao, W. Zeng, L. X. Zhang, S. H. Feng, M. M. Ge, Axikegu, Yonggang Wang, M. J. Chen, Zhao-Qi Wang, Y. Y. Guo, Li Zhang, G. H. Gong, Zhe Cao, Y. K. Hor, Y. H. Yu, T. Montaruli, Jian Wang, Chiming Jin, Z. Min, Xuelong Wang, G. G. Xin, Kai-Kai Duan, D. Bastieri, Y. L. Feng, T. Ke, S. J. Lin, X. T. Huang, L. Y. Wang, B. Liu, Jingzhi Yan, Bingshui Gao, Xiang-Yu Wang, Yulong Li, Tao Zeng, Xuliang Chen, Y. He, C. W. Yang, Jun-Hui Fan, Q. B. Gou, W. L. Li, D. X. Xiao, Qizhi Huang, J. Chen, Xiao-Hu Zhang, H. Cai, M. J. Yang, S. Q. Xi, Hong-Guang Wang, Alejandro Sáiz, Q. H. Chen, S. B. Yang, Fan Yang, A. Masood, F. Zheng, Lang Shao, and M. Heller
- Subjects
Physics ,Astrophysics::High Energy Astrophysical Phenomena ,Hadron ,Gamma ray ,Flux ,Astronomy and Astrophysics ,Astrophysics ,Galactic plane ,Crab Nebula ,Pulsar ,Space and Planetary Science ,Angular diameter ,High Energy Physics::Experiment ,Supernova remnant ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics::Galaxy Astrophysics - Abstract
We report the discovery of a new unidentified extended $\gamma$-ray source in the Galactic plane named LHAASO J0341+5258 with a pre-trial significance of 8.2 standard deviations above 25 TeV. The best fit position is R.A.$=55.34^{\circ}\pm0.11^{\circ}$ and Dec$=52.97^{\circ}\pm0.07^{\circ}$. The angular size of LHAASO J0341+5258 is $0.29^\circ \pm 0.06^\circ_{stat} \pm0.02^\circ_{sys}$. The flux above 25 TeV is about $20\%$ of the flux of Crab Nebula. Although a power-law fit of the spectrum from 10 TeV to 200 TeV with the photon index $\alpha=2.98 \pm 0.19_{stat} \pm 0.02_{sys}$ is not excluded, the LHAASO data together with the flux upper limit at 10 GeV set by the Fermi LAT observation, indicate a noticeable steepening of an initially hard power-law spectrum %($\alpha \leq 1.75$) spectrum with a cutoff at $\approx 50$ TeV. We briefly discuss the origin of UHE gamma-rays. The lack of an energetic pulsar and a young SNR inside or in the vicinity of LHAASO J0341+5258 challenge, but do not exclude both the leptonic and hadronic scenarios of gamma-ray production., Comment: Accepted by APJL
- Published
- 2021
17. Exploring Lorentz Invariance Violation from Ultrahigh-Energy γ Rays Observed by LHAASO
- Author
-
Zhen, Cao, F, Aharonian, Q, An, Axikegu, L X, Bai, Y X, Bai, Y W, Bao, D, Bastieri, X J, Bi, Y J, Bi, H, Cai, J T, Cai, Zhe, Cao, J, Chang, J F, Chang, B M, Chen, E S, Chen, J, Chen, Liang, Chen, Long, Chen, M J, Chen, M L, Chen, Q H, Chen, S H, Chen, S Z, Chen, T L, Chen, X L, Chen, Y, Chen, N, Cheng, Y D, Cheng, S W, Cui, X H, Cui, Y D, Cui, B D'Ettorre, Piazzoli, B Z, Dai, H L, Dai, Z G, Dai, Danzengluobu, D, Della Volpe, X J, Dong, K K, Duan, J H, Fan, Y Z, Fan, Z X, Fan, J, Fang, K, Fang, C F, Feng, L, Feng, S H, Feng, Y L, Feng, B, Gao, C D, Gao, L Q, Gao, Q, Gao, W, Gao, M M, Ge, L S, Geng, G H, Gong, Q B, Gou, M H, Gu, F L, Guo, J G, Guo, X L, Guo, Y Q, Guo, Y Y, Guo, Y A, Han, H H, He, H N, He, J C, He, S L, He, X B, He, Y, He, M, Heller, Y K, Hor, C, Hou, X, Hou, H B, Hu, S, Hu, S C, Hu, X J, Hu, D H, Huang, Q L, Huang, W H, Huang, X T, Huang, X Y, Huang, Z C, Huang, F, Ji, X L, Ji, H Y, Jia, K, Jiang, Z J, Jiang, C, Jin, T, Ke, D, Kuleshov, K, Levochkin, B B, Li, Cheng, Li, Cong, Li, F, Li, H B, Li, H C, Li, H Y, Li, Jian, Li, Jie, Li, K, Li, W L, Li, X R, Li, Xin, Li, Y, Li, Y Z, Li, Zhe, Li, Zhuo, Li, E W, Liang, Y F, Liang, S J, Lin, B, Liu, C, Liu, D, Liu, H, Liu, H D, Liu, J, Liu, J L, Liu, J S, Liu, J Y, Liu, M Y, Liu, R Y, Liu, S M, Liu, W, Liu, Y, Liu, Y N, Liu, Z X, Liu, W J, Long, R, Lu, H K, Lv, B Q, Ma, L L, Ma, X H, Ma, J R, Mao, A, Masood, Z, Min, W, Mitthumsiri, T, Montaruli, Y C, Nan, B Y, Pang, P, Pattarakijwanich, Z Y, Pei, M Y, Qi, Y Q, Qi, B Q, Qiao, J J, Qin, D, Ruffolo, V, Rulev, A, Sáiz, L, Shao, O, Shchegolev, X D, Sheng, J R, Shi, H C, Song, Yu V, Stenkin, V, Stepanov, Y, Su, Q N, Sun, X N, Sun, Z B, Sun, P H T, Tam, Z B, Tang, W W, Tian, B D, Wang, C, Wang, H, Wang, H G, Wang, J C, Wang, J S, Wang, L P, Wang, L Y, Wang, R N, Wang, W, Wang, X G, Wang, X J, Wang, X Y, Wang, Y, Wang, Y D, Wang, Y J, Wang, Y P, Wang, Z H, Wang, Z X, Wang, Zhen, Wang, Zheng, Wang, D M, Wei, J J, Wei, Y J, Wei, T, Wen, C Y, Wu, H R, Wu, S, Wu, W X, Wu, X F, Wu, S Q, Xi, J, Xia, J J, Xia, G M, Xiang, D X, Xiao, G, Xiao, H B, Xiao, G G, Xin, Y L, Xin, Y, Xing, D L, Xu, R X, Xu, L, Xue, D H, Yan, J Z, Yan, C W, Yang, F F, Yang, J Y, Yang, L L, Yang, M J, Yang, R Z, Yang, S B, Yang, Y H, Yao, Z G, Yao, Y M, Ye, L Q, Yin, N, Yin, X H, You, Z Y, You, Y H, Yu, Q, Yuan, H D, Zeng, T X, Zeng, W, Zeng, Z K, Zeng, M, Zha, X X, Zhai, B B, Zhang, H M, Zhang, H Y, Zhang, J L, Zhang, J W, Zhang, L X, Zhang, Li, Zhang, Lu, Zhang, P F, Zhang, P P, Zhang, R, Zhang, S R, Zhang, S S, Zhang, X, Zhang, X P, Zhang, Y F, Zhang, Y L, Zhang, Yi, Zhang, Yong, Zhang, B, Zhao, J, Zhao, L, Zhao, L Z, Zhao, S P, Zhao, F, Zheng, Y, Zheng, B, Zhou, H, Zhou, J N, Zhou, P, Zhou, R, Zhou, X X, Zhou, C G, Zhu, F R, Zhu, H, Zhu, K J, Zhu, and X, Zuo
- Subjects
General Physics and Astronomy - Abstract
Recently, the LHAASO Collaboration published the detection of 12 ultrahigh-energy γ-ray sources above 100 TeV, with the highest energy photon reaching 1.4 PeV. The first detection of PeV γ rays from astrophysical sources may provide a very sensitive probe of the effect of the Lorentz invariance violation (LIV), which results in decay of high-energy γ rays in the superluminal scenario and hence a sharp cutoff of the energy spectrum. Two highest energy sources are studied in this work. No signature of the existence of the LIV is found in their energy spectra, and the lower limits on the LIV energy scale are derived. Our results show that the first-order LIV energy scale should be higher than about 10^{5} times the Planck scale M_{Pl} and that the second-order LIV scale is10^{-3}M_{Pl}. Both limits improve by at least one order of magnitude the previous results.
- Published
- 2021
18. Study of EAS Registered by the PRISMA-32 Array and the Cherenkov Water Calorimeter NEVOD
- Author
-
D. M. Gromushkin, S. S. Khokhlov, A. V. Bulan, Z. T. Izhbulyakova, Yu. V. Stenkin, F. A. Bogdanov, L. Bouchama, and K. O. Yurin
- Subjects
Nuclear physics ,Physics ,Nuclear and High Energy Physics ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,0103 physical sciences ,Continuous mode ,010306 general physics ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Cherenkov radiation - Abstract
Two installations that allow to detect the EAS hadron component in a continuous mode, the Cherenkov water calorimeter (CWC) NEVOD and PRISMA-32 are operated in MEPhI. The comparison of the characteristics of EAS simultaneously registered by CWC NEVOD and PRISMA-32 are presented. Groups of events with different positions of the shower axis are considered.
- Published
- 2019
19. EAS Phenomenology and Cosmic Ray Spectrum Ground Based Measurements
- Author
-
Yu. V. Stenkin
- Subjects
Physics ,Nuclear and High Energy Physics ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,chemistry.chemical_element ,Cosmic ray ,Astrophysics ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Air shower ,chemistry ,Ionization ,0103 physical sciences ,Energy spectrum ,010306 general physics ,Phenomenology (psychology) ,Helium - Abstract
Primary cosmic ray energy spectrum around and above 1 PeV is of great interest due to its non-power-law behavior (“knee”) in PeV region found many years ago using the indirect EAS (Extensive Air Shower) method. The method is based on secondary particles measuring on Earth’s surface under a thick atmosphere. Traditionally, people use detectors sensitive to ionization produced mostly by secondary electromagnetic component and therefore any found changes in EAS size spectrum correspond to secondary components, which have to be recalculated to primary spectrum. Recently some new “knees” were claimed by high altitude experiments: at ∼45 TeV for all-particle spectrum (HAWC), for primary protons and helium: at ∼400 TeV (Tibet ASγ) and at ∼700 TeV (ARGO-YBJ) thus widening the “knee” region from ∼0.045 to 5 PeV. The natural explanation of such a strange spectrum behavior in a wide energy range could be found in the EAS phenomenological approach to the knee problem.
- Published
- 2019
20. Multicomponent Registration of the EAS
- Author
-
R. P. Kokoulin, A. A. Petrukhin, G.C. Trinchero, I. I. Yashin, V. V. Kindin, Yu. V. Stenkin, A. Chiavassa, M. B. Amelchakov, E. A. Zadeba, V. V. Shutenko, G. Mannocchi, S. S. Khokhlov, I. A. Shulzhenko, K. G. Kompaniets, D. M. Gromushkin, K. O. Yurin, O. I. Likiy, N. S. Barbashina, and A. G. Bogdanov
- Subjects
010302 applied physics ,010308 nuclear & particles physics ,Computer science ,0103 physical sciences ,Real-time computing ,General Physics and Astronomy ,Synchronizing ,01 natural sciences ,Energy (signal processing) - Abstract
The NEVOD experimental complex was created at MEPhI. It includes several facilities for studying the electron–photon, muon, and hadron components of the EAS in the energy range of 1 PeV to 1 EeV. This work presents the first results for two months of the joint operation of five facilities (NEVOD-EAS, CWD, CTS, PRISMA-32, and DECOR). The problems of synchronizing the facilities and selecting joint events are considered. The experimental data of these facilities are analyzed for different components of the EAS in overlapping energy ranges.
- Published
- 2019
21. Response of the PRISMA-YBJ Detectors to Earthquakes
- Author
-
V. I. Stepanov, Zeyu Cai, Xuewen Guo, Yu. V. Stenkin, Huihai He, Oleg Shchegolev, Zh. Cao, Ye Liu, Jing Zhao, Sh. Cui, Xinhua Ma, Ya.V. Yanin, and Victor Alekseenko
- Subjects
010302 applied physics ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,General Physics and Astronomy ,Flux ,chemistry.chemical_element ,Crust ,Radon ,Geophysics ,01 natural sciences ,Neutron temperature ,Physics::Geophysics ,chemistry ,0103 physical sciences ,Neutron ,Nuclide ,Nuclear Experiment ,Geology ,Sea level - Abstract
Interesting results are obtained using a setup with electron-neutron detectors (EN-detectors) developed for the PRISMA (PRImary Spectrum Measuring Array) project to study extensive atmospheric showers. A small installation of four EN-detectors (PRISMA-YBJ) has been in operation for three and a half years on the Earth’s surface in Tibet, 4300 m above sea level, constantly measuring the natural flux of thermal neutrons. Neutrons are produced in soil during (α, n)-reactions with naturally radioactive α-particles, mainly from the decay of radon and daughter heavy nuclides. The neutrons are thermalized in the medium and, once in equilibrium with it, become sensitive to its state. They then can indicate many geophysical processes in the crust, including earthquakes. Results illustrating the sensitivity of EN-detectors to earthquakes are considered.
- Published
- 2019
22. Extended Very-High-Energy Gamma-Ray Emission Surrounding PSR J0622+3749 Observed by LHAASO-KM2A
- Author
-
F, Aharonian, Q, An, Axikegu, L X, Bai, Y X, Bai, Y W, Bao, D, Bastieri, X J, Bi, Y J, Bi, H, Cai, J T, Cai, Z, Cao, J, Chang, J F, Chang, X C, Chang, B M, Chen, J, Chen, L, Chen, M J, Chen, M L, Chen, Q H, Chen, S H, Chen, S Z, Chen, T L, Chen, X L, Chen, Y, Chen, N, Cheng, Y D, Cheng, S W, Cui, X H, Cui, Y D, Cui, B Z, Dai, H L, Dai, Z G, Dai, Danzengluobu, D, Della Volpe, B, D'Ettorre Piazzoli, X J, Dong, J H, Fan, Y Z, Fan, Z X, Fan, J, Fang, K, Fang, C F, Feng, L, Feng, S H, Feng, Y L, Feng, B, Gao, C D, Gao, Q, Gao, W, Gao, M M, Ge, L S, Geng, G H, Gong, Q B, Gou, M H, Gu, J G, Guo, X L, Guo, Y Q, Guo, Y Y, Guo, Y A, Han, H H, He, H N, He, J C, He, S L, He, X B, He, Y, He, M, Heller, Y K, Hor, C, Hou, X, Hou, H B, Hu, S, Hu, S C, Hu, X J, Hu, D H, Huang, Q L, Huang, W H, Huang, X T, Huang, Z C, Huang, F, Ji, X L, Ji, H Y, Jia, K, Jiang, Z J, Jiang, C, Jin, D, Kuleshov, K, Levochkin, B B, Li, C, Li, F, Li, H B, Li, H C, Li, H Y, Li, J, Li, K, Li, W L, Li, X, Li, X R, Li, Y, Li, Y Z, Li, Z, Li, E W, Liang, Y F, Liang, S J, Lin, B, Liu, C, Liu, D, Liu, H, Liu, H D, Liu, J, Liu, J L, Liu, J S, Liu, J Y, Liu, M Y, Liu, R Y, Liu, S M, Liu, W, Liu, Y N, Liu, Z X, Liu, W J, Long, R, Lu, H K, Lv, B Q, Ma, L L, Ma, X H, Ma, J R, Mao, A, Masood, W, Mitthumsiri, T, Montaruli, Y C, Nan, B Y, Pang, P, Pattarakijwanich, Z Y, Pei, M Y, Qi, D, Ruffolo, V, Rulev, A, Sáiz, L, Shao, O, Shchegolev, X D, Sheng, J R, Shi, H C, Song, Yu V, Stenkin, V, Stepanov, Q N, Sun, X N, Sun, Z B, Sun, P H T, Tam, Z B, Tang, W W, Tian, B D, Wang, C, Wang, H, Wang, H G, Wang, J C, Wang, J S, Wang, L P, Wang, L Y, Wang, R N, Wang, W, Wang, X G, Wang, X J, Wang, X Y, Wang, Y D, Wang, Y J, Wang, Y P, Wang, Z, Wang, Z H, Wang, Z X, Wang, D M, Wei, J J, Wei, Y J, Wei, T, Wen, C Y, Wu, H R, Wu, S, Wu, W X, Wu, X F, Wu, S Q, Xi, J, Xia, J J, Xia, G M, Xiang, G, Xiao, H B, Xiao, G G, Xin, Y L, Xin, Y, Xing, D L, Xu, R X, Xu, L, Xue, D H, Yan, C W, Yang, F F, Yang, J Y, Yang, L L, Yang, M J, Yang, R Z, Yang, S B, Yang, Y H, Yao, Z G, Yao, Y M, Ye, L Q, Yin, N, Yin, X H, You, Z Y, You, Y H, Yu, Q, Yuan, H D, Zeng, T X, Zeng, W, Zeng, Z K, Zeng, M, Zha, X X, Zhai, B B, Zhang, H M, Zhang, H Y, Zhang, J L, Zhang, J W, Zhang, L, Zhang, L X, Zhang, P F, Zhang, P P, Zhang, R, Zhang, S R, Zhang, S S, Zhang, X, Zhang, X P, Zhang, Y, Zhang, Y F, Zhang, Y L, Zhang, B, Zhao, J, Zhao, L, Zhao, L Z, Zhao, S P, Zhao, F, Zheng, Y, Zheng, B, Zhou, H, Zhou, J N, Zhou, P, Zhou, R, Zhou, X X, Zhou, C G, Zhu, F R, Zhu, H, Zhu, K J, Zhu, X, Zuo, and X Y, Huang
- Abstract
We report the discovery of an extended very-high-energy (VHE) gamma-ray source around the location of the middle-aged (207.8 kyr) pulsar PSR J0622+3749 with the Large High-Altitude Air Shower Observatory (LHAASO). The source is detected with a significance of 8.2σ for E25 TeV assuming a Gaussian template. The best-fit location is (right ascension, declination) =(95.47°±0.11°,37.92°±0.09°), and the extension is 0.40°±0.07°. The energy spectrum can be described by a power-law spectrum with an index of -2.92±0.17_{stat}±0.02_{sys}. No clear extended multiwavelength counterpart of the LHAASO source has been found from the radio to sub-TeV bands. The LHAASO observations are consistent with the scenario that VHE electrons escaped from the pulsar, diffused in the interstellar medium, and scattered the interstellar radiation field. If interpreted as the pulsar halo scenario, the diffusion coefficient, inferred for electrons with median energies of ∼160 TeV, is consistent with those obtained from the extended halos around Geminga and Monogem and much smaller than that derived from cosmic ray secondaries. The LHAASO discovery of this source thus likely enriches the class of so-called pulsar halos and confirms that high-energy particles generally diffuse very slowly in the disturbed medium around pulsars.
- Published
- 2021
23. Discovery of the Ultra-high energy gamma-ray source LHAASO J2108+5157
- Author
-
Zhen Cao, F. Aharonian, Q. An, null Axikegu, L. X. Bai, Y. X. Bai, Y. W. Bao, D. Bastieri, X. J. Bi, Y. J. Bi, H. Cai, J. T. Cai, Zhe Cao, J. Chang, J. F. Chang, B. M. Chen, E. S. Chen, J. Chen, Liang Chen, Long Chen, M. J. Chen, M. L. Chen, Q. H. Chen, S. H. Chen, S. Z. Chen, T. L. Chen, X. L. Chen, Y. Chen, N. Cheng, Y. D. Cheng, S. W. Cui, X. H. Cui, Y. D. Cui, B. D’Ettorre Piazzoli, B. Z. Dai, H. L. Dai, Z. G. Dai, Dan-Zeng Dan-Zeng-Luo-Bu, D. della Volpe, X. J. Dong, K. K. Duan, J. H. Fan, Y. Z. Fan, Z. X. Fan, J. Fang, K. Fang, C. F. Feng, L. Feng, S. H. Feng, Y. L. Feng, B. Gao, C. D. Gao, L. Q. Gao, Q. Gao, W. Gao, M. M. Ge, L. S. Geng, G. H. Gong, Q. B. Gou, M. H. Gu, F. L. Guo, J. G. Guo, X. L. Guo, Y. Q. Guo, Y. Y. Guo, Y. A. Han, H. H. He, H. N. He, J. C. He, S. L. He, X. B. He, Y. He, M. Heller, Y. K. Hor, C. Hou, H. B. Hu, S. Hu, S. C. Hu, X. J. Hu, D. H. Huang, Q. L. Huang, W. H. Huang, X. T. Huang, X. Y. Huang, Z. C. Huang, F. Ji, X. L. Ji, H. Y. Jia, K. Jiang, Z. J. Jiang, C. Jin, T. Ke, D. Kuleshov, K. Levochkin, B. B. Li, Cheng Li, Cong Li, F. Li, H. B. Li, H. C. Li, H. Y. Li, J. Li, K. Li, W. L. Li, X. R. Li, Xin Li, Y. Li, Y. Z. Li, Zhe Li, Zhuo Li, E. W. Liang, Y. F. Liang, S. J. Lin, B. Liu, C. Liu, D. Liu, H. Liu, H. D. Liu, J. Liu, J. L. Liu, J. S. Liu, J. Y. Liu, M. Y. Liu, R. Y. Liu, S. M. Liu, W. Liu, Y. Liu, Y. N. Liu, Z. X. Liu, W. J. Long, R. Lu, H. K. Lv, B. Q. Ma, L. L. Ma, X. H. Ma, J. R. Mao, A. Masood, Z. Min, W. Mitthumsiri, T. Montaruli, Y. C. Nan, B. Y. Pang, P. Pattarakijwanich, Z. Y. Pei, M. Y. Qi, Y. Q. Qi, B. Q. Qiao, J. J. Qin, D. Ruffolo, V. Rulev, A. Sáiz, L. Shao, O. Shchegolev, X. D. Sheng, J. Y. Shi, H. C. Song, Yu. V. Stenkin, V. Stepanov, Y. Su, Q. N. Sun, X. N. Sun, Z. B. Sun, P. H. T. Tam, Z. B. Tang, W. W. Tian, B. D. Wang, C. Wang, H. Wang, H. G. Wang, J. C. Wang, J. S. Wang, L. P. Wang, L. Y. Wang, R. N. Wang, W. Wang, X. G. Wang, X. J. Wang, X. Y. Wang, Y. Wang, Y. D. Wang, Y. J. Wang, Y. P. Wang, Z. H. Wang, Z. X. Wang, Zhen Wang, Zheng Wang, D. M. Wei, J. J. Wei, Y. J. Wei, T. Wen, C. Y. Wu, H. R. Wu, S. Wu, W. X. Wu, X. F. Wu, S. Q. Xi, J. Xia, J. J. Xia, G. M. Xiang, D. X. Xiao, G. Xiao, H. B. Xiao, G. G. Xin, Y. L. Xin, Y. Xing, D. L. Xu, R. X. Xu, L. Xue, D. H. Yan, J. Z. Yan, C. W. Yang, F. F. Yang, J. Y. Yang, L. L. Yang, M. J. Yang, R. Z. Yang, S. B. Yang, Y. H. Yao, Z. G. Yao, Y. M. Ye, L. Q. Yin, N. Yin, X. H. You, Z. Y. You, Y. H. Yu, Q. Yuan, H. D. Zeng, T. X. Zeng, W. Zeng, Z. K. Zeng, M. Zha, X. X. Zhai, B. B. Zhang, H. M. Zhang, H. Y. Zhang, J. L. Zhang, J. W. Zhang, L. X. Zhang, Li Zhang, Lu Zhang, P. F. Zhang, P. P. Zhang, R. Zhang, S. R. Zhang, S. S. Zhang, X. Zhang, X. P. Zhang, Y. F. Zhang, Y. L. Zhang, Yi Zhang, Yong Zhang, B. Zhao, J. Zhao, L. Zhao, L. Z. Zhao, S. P. Zhao, F. Zheng, Y. Zheng, B. Zhou, H. Zhou, J. N. Zhou, P. Zhou, R. Zhou, X. X. Zhou, C. G. Zhu, F. R. Zhu, H. Zhu, K. J. Zhu, and X. Zuo
- Subjects
Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Molecular cloud ,Astrophysics::High Energy Astrophysical Phenomena ,Hadron ,Gamma ray ,Flux ,Sigma ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Gamma-ray astronomy ,Space and Planetary Science ,Energy spectrum ,Ultrahigh energy ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
We report the discovery of a UHE gamma-ray source, LHAASO J2108+5157, by analyzing the LHAASO-KM2A data of 308.33 live days. Significant excess of gamma-ray induced showers is observed in both energy bands of 25-100 TeV and $\gt$100 TeV with 9.5 sigma and 8.5 sigma, respectively. This source is not significantly favored as an extensive source with the angular extension smaller than the point-spread function of KM2A. The measured energy spectrum from 20 to 200 TeV can be approximately described by a power-law function with an index of -2.83$\pm$ 0.18stat. A harder spectrum is demanded at lower energies considering the flux upper limit set by Fermi-LAT observations. The position of the gamma-ray emission is correlated with a giant molecular cloud, which favors a hadronic origin. No obvious counterparts have been found, deeper multiwavelength observations will help to shed new light on this intriguing UHE source., Comment: 12 pages, 7 figures, accepted by ApJL
- Published
- 2021
- Full Text
- View/download PDF
24. Prospects for a Multi-TeV Gamma-ray Sky Survey with the LHAASO Water Cherenkov Detector Array
- Author
-
Guoqing Xiao, Bo Gao, Yu-Hua Yao, B. Q. Qiao, E. W. Liang, X. G. Wang, Yong Zhang, X. C. Chang, X. H. Cui, S. Wu, F. Y. Li, M. M. Ge, H. L. Dai, L. X. Bai, Z. G. Yao, Lei Zhao, Chang Jin, L. Chen, J. W. Zhao, H. D. Liu, Duo Yan, BZ Zhao, Z. X. Liu, Y. C. Nan, H. B. Li, H. K. Lv, B. D'Ettorre Piazzoli, W. X. Wu, Xiao-Yang Zhang, Y. D. Cheng, Z. H. Wang, F. R. Zhu, Y. Wang, M. Zha, P. Zhou, Yi Chen, C. X. Liu, Xufang Li, Yinong Liu, Jun-Jie Wei, Y. Y. Guo, R. Y. Liu, X. F. Wu, L. Zhang, X. J. Wang, H. M. Zhang, V. Rulev, Xiao-Hu Zhang, Y. Yu, C. Y. Wu, Zhe Cao, W. H. Huang, Guanghua Gong, Li-Sheng Geng, B. M. Chen, L. Xue, B. Liu, L. L. Yang, D. H. Huang, Y. A. Han, B. B. Zhang, D. M. Wei, Y. D. Cui, S. R. Zhang, Ziyi Wang, Zhengguo Cao, X. L. Ji, R. Lu, Jianrong Zhou, M. J. Yang, Z. Y. Pei, Y. M. Ye, S. P. Chao, H. C. Li, Jun He, Qiang Yuan, G. M. Xiang, Z. J. Jiang, Jiaxing Li, V. Alekseenko, J. F. Chang, Danzengluobu, H. Y. Jia, J. Chen, Zebo Tang, P. Pattarakijwanich, J. S. Liu, H. Y. Zhang, J. R. Mao, Wang Yanfang, H. Wang, D. Bastieri, Liang-Liang Wang, Jie Zhang, Teresa Montaruli, Cong Li, Y. Li, K. Levochkin, X. J. Bi, T. X. Zeng, Chao-Peng Wang, J. W. Zhang, S. Z. Chen, H. Liu, X. D. Sheng, Yu. V. Stenkin, C. Hou, H. Zhu, Z. K. Zeng, P. P. Zhang, P. F. Zhang, Wenwu Tian, W. J. Long, Lanqing Ma, G. G. Xin, S. H. Feng, X. Y. Wang, X. Zuo, J. C. Wang, W. H. Wang, R. Zhou, N. Yin, H. B. Hu, C. F. Feng, S. M. Liu, X. T. Huang, Yi Zhang, N. Cheng, Cheng Li, Ying Zhang, Hong-Jie Li, H. Li, Y. Zheng, M. L. Chen, Axikegu, S. B. Yang, S. W. Cui, F. Ji, J. H. Fan, Y. Z. Fan, Bo-Qiang Ma, C. W. Yang, L. Feng, Z. G. Dai, L. Z. Zhao, L. Q. Yin, Wang Yingjie, Wei Liu, Zujian Wang, Z. Li, W. Zeng, Shengxue Zhang, Q. B. Gou, Huihai He, M. H. Gu, J. Fang, X. L. Chen, H. G. Wang, O. Shchegolev, S. L. He, K. Jiang, F. Zheng, T. L. Chen, W. Gao, T. Wen, L. Shao, Yucheng Feng, M. Y. Qi, X. X. Zhou, Yiwei Wang, Felix Aharonian, K. Li, Y. F. Liang, Ruizhi Yang, Y. W. Bao, David Ruffolo, Z. Y. You, S. Hu, J. Y. Liu, Ming Chen, Warit Mitthumsiri, V. Stepanov, Q. An, Q. Gao, K. J. Zhu, Z. B. Sun, P. H. T. Tam, Y. Q. Guo, H. R. Wu, B. Z. Dai, D. Liu, M. Heller, Sina Chen, H. D. Zeng, X. H. You, Renxin Xu, C. G. Zhu, Minghui Liu, X. H. Ma, Y. He, J. R. Shi, Yuan-Ming Xing, F. F. Yang, X. X. Li, W. L. Li, Q. H. Chen, D. della Volpe, Huang Qiyan, A. Masood, H. Cai, and Alejandro Sáiz
- Subjects
Nuclear and High Energy Physics ,Active galactic nucleus ,Cherenkov detector ,media_common.quotation_subject ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,High Energy Physics - Experiment ,law.invention ,Hochenergie-Astrophysik Theorie - Abteilung Hinton ,High Energy Physics - Experiment (hep-ex) ,Observatory ,law ,0103 physical sciences ,010306 general physics ,Instrumentation ,media_common ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Order (ring theory) ,Astronomy and Astrophysics ,Projection (relational algebra) ,Air shower ,Sky ,High Energy Physics::Experiment ,Astrophysics - High Energy Astrophysical Phenomena ,Energy (signal processing) - Abstract
The Water Cherenkov Detector Array (WCDA) is a major component of the Large High Altitude Air Shower Array Observatory (LHAASO), a new generation cosmic-ray experiment with unprecedented sensitivity, currently under construction. The WCDA is aimed at the study of TeV $\gamma$-rays. In order to evaluate the prospects of searching for TeV $\gamma$-ray sources with the WCDA, we present in this paper a projection for the one-year sensitivity of the WCDA to TeV $\gamma$-ray sources from TeVCat (footnote: http://tevcat.uchicago.edu) using an all-sky approach. Out of 128 TeVCat sources observable to the WCDA up to a zenith angle of $45^\circ$, we estimate that 42 would be detectable for one year of observations at a median energy of 1 TeV. Most of them are Galactic sources, and the extragalactic sources are Active Galactic Nuclei (AGN)., Comment: 10 pages,10 figures, it is to be published in Chinese Physics C
- Published
- 2020
- Full Text
- View/download PDF
25. Absolute calibration of LHAASO WFCTA camera based on LED
- Author
-
W. J. Long, Rong Xu, Cong Li, J. J. Xia, Houdun Zeng, Axikegu, Yongchun Wang, H. H. He, Xufang Li, X. X. Zhai, Y. D. Cui, L. Feng, H. B. Li, F. R. Zhu, Qie Sun, Yi Chen, F. Y. Li, C. F. Feng, D. H. Huang, Bin Zhou, J. Y. Shi, V. I. Stepanov, H. Zhu, Jun-Jie Wei, L. Z. Zhao, F. Ji, M. Zha, Jia Zhang, Y. H. Yao, Yi Zhang, B. Q. Qiao, Rui Zhang, Linbin Yang, Zhengguo Cao, M. L. Chen, Jianeng Zhou, Jian Wang, Chiming Jin, Zhe Cao, M. M. Ge, X. Zuo, Xuliang Chen, D.A. Kuleshov, Hong-Guang Wang, Y. He, Xiang-Yu Wang, E. S. Chen, Y. A. Han, N. Cheng, J. Fang, S. Hu, J. Y. Liu, G. M. Xiang, H. C. Song, S. P. Zhao, Zebo Tang, H. B. Xiao, W. Liu, L. X. Bai, Binyu Zhao, Yun-Feng Liang, Tao Zeng, Jixia Li, W. Zeng, Bin Ma, Donglian Xu, Z. Min, Xuelong Wang, Xiaofei Zhang, X. L. Guo, X. J. Dong, Hefan Li, S. H. Feng, Q. H. Chen, G. G. Xin, Warit Mitthumsiri, Kai-Kai Duan, Ying Zhang, P. F. Zhang, Z. X. Wang, H.Y. Gan, T. Wen, S. W. Cui, K. Levochkin, Hao Zhou, W. Wang, P. Pattarakijwanich, Kun Fang, D. M. Wei, H. Cai, S. Wu, Sina Chen, X. D. Sheng, Minghao Qi, C. X. Liu, Y. L. Feng, D. Bastieri, Q. An, B. Y. Pang, B. Liu, B. D. Wang, T. Ke, S. B. Yang, Bai Yibing, Lidan Gao, Y. W. Bao, Y. C. Nan, S. Z. Chen, Zhe Li, Shi-Qi Hu, X. H. You, H. B. Hu, H. Liu, X. T. Huang, J. C. He, Bingshui Gao, R. Zhou, L. Y. Wang, Z. H. Wang, Li Zhang, Z. G. Dai, M. J. Yang, Fan Yang, A. Masood, David Ruffolo, C. W. Yang, Q. Gao, Jun Liu, Z. K. Zeng, C. D. Gao, Lei Zhao, Z. C. Huang, B. B. Li, G. H. Gong, Lang Shao, M. J. Chen, Y. J. Wang, H. M. Zhang, D. della Volpe, He Zhang, Jianguo Qin, Y. J. Bi, Jun-Hui Fan, H. D. Liu, W. H. Huang, Y. D. Cheng, Z. B. Sun, Bo Zhang, Duo Yan, Z. X. Liu, Ruizhi Yang, X. N. Sun, Li-Sheng Geng, S. L. He, W. L. Li, Y. P. Wang, Y. H. Yu, Z. G. Yao, D. X. Xiao, J.W. Xia, X. G. Wang, H. L. Dai, Y. Y. Guo, Danzengluobu, Y. Q. Qi, H. Wang, W. Gao, Yi Liu, J. B. Zhao, Y. K. Hor, J. Chen, Zheng Wang, Q. B. Gou, L. P. Wang, Qizhi Huang, T. L. Chen, X. F. Wu, X. L. Ji, R. Lu, Cheng Guang Zhu, Zhuo Li, T. Montaruli, S. Q. Xi, Zhen Wang, Y.T. Fu, G. C. Xiao, Y. Z. Fan, X. H. Cui, Z. Y. Pei, B. D'Ettorre Piazzoli, W. X. Wu, H. Y. Jia, Y. Wang, B. Z. Dai, Alejandro Sáiz, Youping Li, J. T. Cai, R. Liu, Long Chen, Y. J. Wei, Fengqin Guo, J. F. Chang, V. Rulev, L. Xue, Liang Chen, Y. L. Xin, Yugang Zhang, Xinbo He, K. Jiang, X. J. Bi, X. J. Hu, Y. Zheng, L. Q. Yin, X. Y. Huang, J. W. Zhang, P. P. Zhang, Wenwu Tian, Pak-Hin Thomas Tam, H. C. Li, Z. X. Fan, Z. Y. You, J. Y. Yang, Ping Zhou, Junjie Mao, Y. Z. Li, F. Zheng, Y. Q. Guo, H. R. Wu, B. M. Chen, X. X. Zhou, Q. Yuan, Felix Aharonian, H. N. He, M. Heller, K. Li, L. L. Ma, Yu. V. Stenkin, Z. J. Jiang, J. Liu, Yong Zhang, R. N. Wang, C. Hou, Shuibin Lin, S. M. Liu, Lu Zhang, J. S. Wang, Cunguo Wang, E. W. Liang, N. Yin, K. J. Zhu, Minghui Liu, Shengxue Zhang, Cheng Li, Dong Liu, Jinyao Liu, C. Y. Wu, Y. M. Ye, Yunchao Liu, Y. M. Xing, H. K. Lv, X. H. Ma, Xiang Zhang, Y. Su, J. G. Guo, S. R. Zhang, M. H. Gu, L. X. Zhang, Jiawei Yan, Xin Li, and Oleg Shchegolev
- Subjects
Physics ,Nuclear and High Energy Physics ,Photon ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmic ray ,Metrology ,law.invention ,Telescope ,Air shower ,Silicon photomultiplier ,Optics ,law ,Calibration ,business ,Instrumentation ,Cherenkov radiation - Abstract
The main scientific goal of the LHAASO WFCTA experiment is to measure the cosmic ray energy spectra and composition from 10 TeV to 1 EeV. Cherenkov photons in the extensive air shower measured by the SiPM camera of Cherenkov telescopes can be used to reconstruct the cosmic ray energy. The absolute calibration of the camera is a crucial step to achieve the accurate measurement of the cosmic ray energy spectrum. A multi-wavelength cylindrical illuminator based on LEDs is developed and mounted inside the telescope to calibrate and monitor the camera, and the illuminator’s stability is better than 0.5% under the temperature variation from -26 to 26 ° C. A portable probe with a single photoelectron resolution of 21.6% is developed. After calibration by National Institute of Metrology, China (NIM), the probe is taken to the LHAASO site to measure the absolute photon density of the cylindrical illuminator inside the telescope. Based on the illuminator with known photon density, the photon conversion factor of the camera can be calibrated, and the overall calibration uncertainty is less than 2.6%.
- Published
- 2022
26. Investigation of the EAS Neutron Component with the PRISMA-32 Array
- Author
-
Yu. V. Stenkin, K. O. Yurin, F. A. Bogdanov, Oleg Shchegolev, and D. M. Gromushkin
- Subjects
Physics ,Nuclear and High Energy Physics ,Scintillation ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Mode (statistics) ,01 natural sciences ,Continuous data ,Optics ,Component (UML) ,0103 physical sciences ,High Energy Physics::Experiment ,Neutron ,010306 general physics ,business - Abstract
Data on the EAS neutron component obtained using the PRISMA-32 array are presented. Secondary neutrons are first moderated and then detected by specialized scintillation electron–neutron detectors (en-detectors) within 20 ms of the arrival of the shower front. The PRISMA-32 array comprises 32 en-detectors and has been operated in the continuous data acquisition mode for more than five years.
- Published
- 2018
27. Low-background EN-detector for the investigation of the neutron component of EASs
- Author
-
A. A. Lakhonin, K. O. Yurin, A. A. Petrukhin, D. M. Gromushkin, Oleg Shchegolev, Yu. V. Stenkin, I. I. Yashin, and F. A. Bogdanov
- Subjects
010302 applied physics ,Physics ,Nuclear and High Energy Physics ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Context (language use) ,Scintillator ,01 natural sciences ,Neutron temperature ,Charged particle ,Optics ,0103 physical sciences ,Neutron detection ,Neutron ,business ,Sensitivity (electronics) - Abstract
Thermal neutrons are detected using a scintillator compound based on ZnS(Ag) with B2O3 added to it. The pulse height generated by single charged particles in a scintillator of small thickness (50 mg/cm2) is not larger than that of a noise signal due to a low sensitivity to single charged particles. As a result, the detector satisfies the requirements of a low-background one in the context of cosmic-ray experiments. The detector is to be used for neutron detection in extensive air showers.
- Published
- 2018
28. Studying the Mass Composition of Cosmic Rays with Energies of 1015–1017 eV in the PRISMA Project
- Author
-
Shuwang Cui, Jing Zhao, Xuewen Guo, Zh. Cao, Xinhua Ma, Ye Liu, Yu. V. Stenkin, C. Guo, Oleg Shchegolev, X. Xe, Ya.V. Yanin, V. I. Stepanov, Zeyu Cai, and Victor Alekseenko
- Subjects
010302 applied physics ,Mass number ,Physics ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Hadron ,General Physics and Astronomy ,Cosmic ray ,Electron ,Mass composition ,01 natural sciences ,Nuclear physics ,Primary (astronomy) ,0103 physical sciences ,Neutron - Abstract
The mass composition of primary cosmic rays remains an unresolved problem of physics in the region of energies above the knee. Results from different experiments are contradictory in assessments of the mean mass number and its variation as the primary energy grows. The PRISMA project is designed to study the energy spectrum and mass composition of cosmic rays at energies of 1015–1017 eV. The project is based on a detector capable of simultaneously detecting the electromagnetic and hadron components of a shower. The results are presented from measurements with the PRISMA-YBJ prototype located at 4300 m a.s.l., made over 3.5 years of operation. A new way of estimating the average mass composition from the electron/neutron ratio is tested.
- Published
- 2019
29. NEVOD — An experimental complex for multi-component investigations of cosmic rays and their interactions in the energy range 1–1010 GeV
- Author
-
A. Chiavassa, A. G. Bogdanov, E A Zadeba, A. N. Dmitrieva, E. A. Yurina, G. Mannocchi, I. I. Astapov, Yu. N. Mishutina, A. Yu. Konovalova, V. V. Shutenko, S. S. Khokhlov, K. O. Yurin, V. V. Ovchinnikov, R. P. Kokoulin, V. V. Borog, I. A. Shulzhenko, Gian Carlo Trinchero, M. B. Amelchakov, Yu. V. Stenkin, V. S. Vorobiev, N. S. Barbashina, V. V. Kindin, K. G. Kompaniets, D. M. Gromushkin, I. I. Yashin, F. A. Bogdanov, A. A. Kovylyaeva, and A. A. Petrukhin
- Subjects
Nuclear physics ,Physics ,Range (particle radiation) ,Component (thermodynamics) ,Cosmic ray ,Instrumentation ,Mathematical Physics ,Energy (signal processing) - Published
- 2021
30. Observation of the Crab Nebula with LHAASO-KM2A − a performance study *
- Author
-
F. Aharonian, Q. An, 克古 Axikegu, L. X. Bai, Y. X. Bai, Y. W. Bao, D. Bastieri, X. J. Bi, Y. J. Bi, H. Cai, J. T. Cai, Z. Cao, J. Chang, J. F. Chang, X. C. Chang, B. M. Chen, J. Chen, L. Chen, M. J. Chen, M. L. Chen, Q. H. Chen, S. H. Chen, S. Z. Chen, T. L. Chen, X. L. Chen, Y. Chen, N. Cheng, Y. D. Cheng, S. W. Cui, X. H. Cui, Y. D. Cui, B. Z. Dai, H. L. Dai, Z. G. Dai, 罗布 Danzengluobu, D. della Volpe, B. D'Ettorre Piazzoli, X. J. Dong, J. H. Fan, Y. Z. Fan, Z. X. Fan, J. Fang, K. Fang, C. F. Feng, L. Feng, S. H. Feng, Y. L. Feng, B. Gao, C. D. Gao, Q. Gao, W. Gao, M. M. Ge, L. S. Geng, G. H. Gong, Q. B. Gou, M. H. Gu, J. G. Guo, X. L. Guo, Y. Q. Guo, Y. Y. Guo, Y. A. Han, H. H. He, H. N. He, J. C. He, S. L. He, X. B. He, Y. He, M. Heller, Y. K. Hor, C. Hou, X. Hou, H. B. Hu, S. Hu, S. C. Hu, X. J. Hu, D. H. Huang, Q. L. Huang, W. H. Huang, X. T. Huang, Z. C. Huang, F. Ji, X. L. Ji, H. Y. Jia, K. Jiang, Z. J. Jiang, C. Jin, D. Kuleshov, K. Levochkin, B. B. Li, C. Li, F. Li, H. B. Li, H. C. Li, H. Y. Li, J. Li, K. Li, W. L. Li, X. Li, X. R. Li, Y. Li, Y. Z. Li, Z. Li, E. W. Liang, Y. F. Liang, S. J. Lin, B. Liu, C. Liu, D. Liu, H. Liu, H. D. Liu, J. Liu, J. L. Liu, J. S. Liu, J. Y. Liu, M. Y. Liu, R. Y. Liu, S. M. Liu, W. Liu, Y. N. Liu, Z. X. Liu, W. J. Long, R. Lu, H. K. Lv, B. Q. Ma, L. L. Ma, X. H. Ma, J. R. Mao, A. Masood, W. Mitthumsiri, T. Montaruli, Y. C. Nan, B. Y. Pang, P. Pattarakijwanich, Z. Y. Pei, M. Y. Qi, D. Ruffolo, V. Rulev, A. Sáiz, L. Shao, O. Shchegolev, X. D. Sheng, J. R. Shi, H. C. Song, Yu. V. Stenkin, V. Stepanov, Q. N. Sun, X. N. Sun, Z. B. Sun, P. H. T. Tam, Z. B. Tang, W. W. Tian, B. D. Wang, C. Wang, H. Wang, H. G. Wang, J. C. Wang, J. S. Wang, L. P. Wang, L. Y. Wang, R. N. Wang, W. Wang, X. G. Wang, X. J. Wang, X. Y. Wang, Y. D. Wang, Y. J. Wang, Y. P. Wang, Z. Wang, Z. H. Wang, Z. X. Wang, D. M. Wei, J. J. Wei, Y. J. Wei, T. Wen, C. Y. Wu, H. R. Wu, S. Wu, W. X. Wu, X. F. Wu, S. Q. Xi, J. Xia, J. J. Xia, G. M. Xiang, G. Xiao, H. B. Xiao, G. G. Xin, Y. L. Xin, Y. Xing, D. L. Xu, R. X. Xu, L. Xue, D. H. Yan, C. W. Yang, F. F. Yang, J. Y. Yang, L. L. Yang, M. J. Yang, R. Z. Yang, S. B. Yang, Y. H. Yao, Z. G. Yao, Y. M. Ye, L. Q. Yin, N. Yin, X. H. You, Z. Y. You, Y. H. Yu, Q. Yuan, H. D. Zeng, T. X. Zeng, W. Zeng, Z. K. Zeng, M. Zha, X. X. Zhai, B. B. Zhang, H. M. Zhang, H. Y. Zhang, J. L. Zhang, J. W. Zhang, L. Zhang, L. X. Zhang, P. F. Zhang, P. P. Zhang, R. Zhang, S. R. Zhang, S. S. Zhang, X. Zhang, X. P. Zhang, Y. Zhang, Y. F. Zhang, Y. L. Zhang, B. Zhao, J. Zhao, L. Zhao, L. Z. Zhao, S. P. Zhao, F. Zheng, Y. Zheng, B. Zhou, H. Zhou, J. N. Zhou, P. Zhou, R. Zhou, X. X. Zhou, C. G. Zhu, F. R. Zhu, H. Zhu, K. J. Zhu, and X. Zuo
- Subjects
Physics ,Nuclear and High Energy Physics ,High energy ,010308 nuclear & particles physics ,Cosmic distance ladder ,Astronomy and Astrophysics ,Astrophysics ,01 natural sciences ,Crab Nebula ,0103 physical sciences ,Energy spectrum ,010306 general physics ,Instrumentation ,Energy (signal processing) - Abstract
A sub-array of the Large High Altitude Air Shower Observatory (LHAASO), KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV. Even though the detector construction is still underway, half of the KM2A array has been operating stably since the end of 2019. In this paper, we present the KM2A data analysis pipeline and the first observation of the Crab Nebula, a standard candle in very high energy γ-ray astronomy. We detect γ-ray signals from the Crab Nebula in both energy ranges of 10 100 TeV and 100 TeV with high significance, by analyzing the KM2A data of 136 live days between December 2019 and May 2020. With the observations, we test the detector performance, including angular resolution, pointing accuracy and cosmic-ray background rejection power. The energy spectrum of the Crab Nebula in the energy range 10-250 TeV fits well with a single power-law function dN/dE = (1.13 0.05 0.08 ) 10 (E/20 TeV) cm s TeV . It is consistent with previous measurements by other experiments. This opens a new window of γ-ray astronomy above 0.1 PeV through which new ultrahigh-energy γ-ray phenomena, such as cosmic PeVatrons, might be discovered.
- Published
- 2021
31. Spatial distribution function of electrons and thermal neutrons in extensive air showers at sea level
- Author
-
Oleg Shchegolev and Yu. V. Stenkin
- Subjects
Physics ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Nuclear Theory ,Hadron ,Function (mathematics) ,Electron ,Spatial distribution ,01 natural sciences ,Neutron temperature ,Electronic, Optical and Magnetic Materials ,Nuclear physics ,Altitude ,0103 physical sciences ,High Energy Physics::Experiment ,Neutron ,Nuclear Experiment ,010306 general physics ,Sea level - Abstract
The spatial distributions of electrons and hadrons in extensive air showers, obtained during the PRISMA-32 experiment simulation, are considered. The experiment was simulated for primary protons and iron nuclei using the CORSIKA6.9 and GEANT4.10 software packages. The simulated spatial distribution functions of electrons and neutrons in the extensive air showers (EAS) at the Moscow altitude are compared to the published experimental data of the PRISMA-32 setup.
- Published
- 2016
32. Cosmic ray spectrum measured by the PRISMA-32 setup
- Author
-
D. M. Gromushkin, Yu. V. Stenkin, F. A. Bogdanov, K. O. Yurin, and Oleg Shchegolev
- Subjects
Physics ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Nuclear Theory ,Hadron ,Spectrum (functional analysis) ,Cosmic ray ,Continuous mode ,01 natural sciences ,Neutron temperature ,030218 nuclear medicine & medical imaging ,Electronic, Optical and Magnetic Materials ,Nuclear physics ,03 medical and health sciences ,0302 clinical medicine ,0103 physical sciences ,High Energy Physics::Experiment ,Neutron ,Nuclear Experiment - Abstract
The results of measurements of the spectrum of extensive air showers (EASs) by the number of neutrons detected by the PRISMA-32 setup are presented. The neutron component is formed during the interaction of high-energy shower hadrons with nuclei of atmospheric and Earth’s surface atoms. The PRISMA-32 setup consists of 32 en-detectors and operates in the continuous mode for about 5 years.
- Published
- 2017
33. The URAN array for studying atmospheric neutrons
- Author
-
S. S. Khokhlov, I. I. Astapov, A. A. Petrukhin, D. M. Gromushkin, N. S. Barbashina, I. A. Shulzhenko, R. P. Kokoulin, K. O. Yurin, V. V. Ovchinnikov, I. I. Yashin, F. A. Bogdanov, and Yu. V. Stenkin
- Subjects
Physics ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,General Physics and Astronomy ,chemistry.chemical_element ,Cosmic ray ,Scintillator ,01 natural sciences ,Atmosphere ,Optics ,chemistry ,0103 physical sciences ,Cluster (physics) ,High Energy Physics::Experiment ,Neutron ,010306 general physics ,business ,Boron - Abstract
The URAN array is designed to study primary cosmic rays in the region of the knee by detecting neutrons produced as a result of interaction between EAS particles and nuclei in the atmosphere or matter near the installation. It consists of 72 detectors mounted on the roofs of experimental buildings and combined into cluster structures of 12 detectors. The registering element is scintillator based on natural boron. The area of each detector is 0.36 m2.
- Published
- 2017
34. A new way of studying the mass composition of cosmic rays
- Author
-
Yu. V. Stenkin and Oleg Shchegolev
- Subjects
Physics ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Hadron ,Detector ,General Physics and Astronomy ,Cosmic ray ,Scintillator ,01 natural sciences ,Neutron temperature ,Nuclear physics ,Primary (astronomy) ,0103 physical sciences ,Particle ,Atomic number ,Atomic physics ,010306 general physics - Abstract
A new way of studying mass composition of cosmic rays is proposed. The electronic and hardronic components of extensive air showers (EASs) are measured over the area of the unit using special scintillator detectors (en-detectors). Shower distribution R = е/n (i.e., the ratio of release of energy measured by endetectors (е, in particles) to the number of recorded thermal neutrons (n)) is suggested for use as a measured parameter that depends on the atomic number of the primary particle. According to preliminary calculations, this distribution differs for different types of primary particles at the level of observation.
- Published
- 2017
35. Sporadic increases of radioactive aerosols as a possible reason for heavy nuclides enhancements recorded with the en-detectors
- Author
-
Victor Alekseenko, Yu. V. Stenkin, O. I. Mikhailova, D. D. Dzhappuev, K. R. Levochkin, A. U. Kudjaev, Oleg Shchegolev, V. I. Stepanov, and D.A. Kuleshov
- Subjects
010504 meteorology & atmospheric sciences ,Physics::Instrumentation and Detectors ,Health, Toxicology and Mutagenesis ,Radioactive source ,chemistry.chemical_element ,Cosmic ray ,Radon ,010501 environmental sciences ,Scintillator ,Atmospheric sciences ,01 natural sciences ,Physics::Geophysics ,Radiation Monitoring ,Environmental Chemistry ,Nuclide ,Nuclear Experiment ,Waste Management and Disposal ,0105 earth and related environmental sciences ,Aerosols ,General Medicine ,Pollution ,Neutron temperature ,Aerosol ,chemistry ,Air Pollutants, Radioactive ,Environmental science ,High Energy Physics::Experiment ,Neutrino - Abstract
Some unexpected sporadic increases of an environmental radioactive background have been recorded at mountain level at Baksan Neutrino Observatory (BNO, 1700 m above sea level) using electron-neutron detectors (en-detectors), which could be explained by radioactive aerosol enhancements. The large area inorganic scintillator en-detectors developed for cosmic ray study are continuously monitoring environmental thermal neutron fluxes at various geophysical conditions. Application of the pulse shape discrimination method allows us to select and separately measure both thermal neutrons and radioactive beta-decay nuclides being products of radon decays in air (mostly Rn-222 and Rn-220). There are two en-detector setups running now at BNO, one deep underground while another one at surface. Both installations had recorded some strange sporadic increases of radioactive nuclides in air. In this paper, we present results and the most probable explanation of the significant increases joint by radioactive aerosols production but caused by different reasons: Baksan river floods or nearby underground experiment with powerful Cr-51 radioactive source.
- Published
- 2020
36. Novel method for detecting the hadronic component of extensive air showers
- Author
-
Yu. V. Stenkin, I. I. Yashin, V. I. Volchenko, V.I. Stepanov, Oleg Shchegolev, D. M. Gromushkin, and A. A. Petrukhin
- Subjects
Physics ,Nuclear and High Energy Physics ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Nuclear Theory ,Hadron ,Atomic and Molecular Physics, and Optics ,Neutron temperature ,Nuclear physics ,Component (UML) ,Neutron detection ,High Energy Physics::Experiment ,Neutron ,Nuclear Experiment - Abstract
A novel method for studying the hadronic component of extensive air showers (EAS) is proposed. The method is based on recording thermal neutrons accompanying EAS with en-detectors that are sensitive to two EAS components: an electromagnetic (e) component and a hadron component in the form of neutrons (n). In contrast to hadron calorimeters used in some arrays, the proposed method makes it possible to record the hadronic component over the whole area of the array. The efficiency of a prototype array that consists of 32 en-detectors was tested for a long time, and some parameters of the neutron EAS component were determined.
- Published
- 2015
37. On the cosmic ray energy spectrum 'knees'
- Author
-
Oleg Shchegolev and Yu. V. Stenkin
- Subjects
Physics ,History ,Energy spectrum ,Cosmic ray ,Astrophysics ,Computer Science Applications ,Education - Published
- 2019
38. Status of the URAN array for detection of EAS neutron component
- Author
-
A. A. Petrukhin, P A Semov, D. M. Gromushkin, Yu. V. Stenkin, R. P. Kokoulin, I. A. Shulzhenko, I. I. Yashin, F. A. Bogdanov, and K. O. Yurin
- Subjects
Physics ,History ,Physics::Instrumentation and Detectors ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Hadron ,Detector ,Scintillator ,Neutron temperature ,Computer Science Applications ,Education ,Optics ,Component (UML) ,Neutron detection ,High Energy Physics::Experiment ,Neutron ,business ,Energy (signal processing) - Abstract
First prototypes of PRISMA-32 neutron detectors based on the ZnS (Ag) scintillator demonstrated the perspectives of their application for detection of neutrons in extensive air showers. Detected thermal neutrons are generated due to interactions of the hadronic component with the nuclei of the atmosphere or the matter surrounding the detector and carry important information about the energy of primary particles. A mixture of zinc sulfide with natural boron (ZnS + B2O3) is used in the URAN setup. Detectors of the URAN array are located on the roofs of NEVOD and neighboring laboratory buildings; the area of each detector is 0.36 m2. The array consists of independent clusters of 12 detectors in each and is united by a central station of collection and processing of information. Two new clusters of the array were put into operation in 2017, synchronization with other NEVOD setups (NEVOD-EAS array and NEVOD-DECOR-SCT) was provided, and collection of experimental data was started with the area of about 103 m2. The first events of the EAS with neutrons have been registered and data on the temporal distribution of EAS neutrons have been obtained.
- Published
- 2019
39. Variations in the neutron flux during thunderstorms
- Author
-
A. U. Kudjaev, Oleg Shchegolev, I. I. Yashin, Yu. V. Stenkin, O. I. Michailova, V. I. Stepanov, V. P. Sulakov, D. M. Gromushkin, D. D. Dzhappuev, and Victor Alekseenko
- Subjects
Physics ,Scintillation ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Nuclear Theory ,Hadron ,General Physics and Astronomy ,Flux ,Physics::Geophysics ,Nuclear physics ,Neutron flux ,Observatory ,Thunderstorm ,Neutron ,Neutrino ,Nuclear Experiment - Abstract
The results from the registration and analysis of sporadic variations of atmospheric thermal neutron flux during thunderstorms are reported. Measurements were performed in Moscow and at the Baksan Neutrino Observatory of the Institute for Nuclear Research of the Russian Academy of Sciences. The neutron flux was detected by unscreened scintillation en-detectors based on 6LiF + ZnS (Ag) compound targets with signals selected according to pulse shape. Reductions of 5–10% in the neutron flux due to shower precipitates during thunderstorms are detected. No incidents of increased neutron flux during thunderstorms were detected over four summer seasons. The upper limits for the integrated and pulsed flux of neutrons from thunderbolts are estimated.
- Published
- 2015
40. Detection of thermal neutrons with the PRISMA-YBJ array in extensive air showers selected by the ARGO-YBJ experiment
- Author
-
M. Zha, Labaciren, C. C. Ning, O. B. Shchegolev, L. Zhang, T. L. Chen, C. Vigorito, Z. Y. Cai, Zhenyong Feng, P. Bernardini, P. Salvini, Hm Zhang, C. Y. Wu, G. Marsella, C. Q. Liu, Q. B. Gou, V. Volchenko, L. L. Ma, P. Vallania, Zhengguo Cao, R. Santonico, H. H. He, H. Lu, G. Mancarella, H. Wang, Danzengluobu, J. K. K. Liu, B. D'Ettorre Piazzoli, A. D'Amone, Q. Q. Zhu, A. F. Yuan, F. Shi, X. W. Guo, S. M. Mari, P. R. Shen, X. C. Yang, X. X. Zhou, T. Di Girolamo, L. Xue, V. V. Alekseenko, Yu. V. Stenkin, Zhaxiciren, Y. H. Tan, Zhaxisangzhu, Hongbo Hu, V. Aynutdinov, Cunfeng Feng, S. W. Cui, V.I. Stepanov, Yicheng Guo, X. J. Bi, Ye Liu, S. Vernetto, Q. Y. Yang, S. Z. Chen, F. R. Zhu, S. Mastroianni, H. Y. Jia, H. J. Li, H. R. Wu, P. Montini, X. H. Ma, V. Rulev, Minghui Liu, A. Surdo, G. Di Sciascio, Zhaoyang Feng, X. Y. Zhang, Xiangdong Sheng, J. Zhao, S. Catalanotti, B. Z. Dai, Y. J. Zhang, R. Iuppa, B. Bartoli, I. De Mitri, Haibing Hu, Z. G. Yao, L. Perrone, P. Pistilli, H. M. Zhang, M. Iacovacci, Bartoli, B., Bernardini, P., Bi, X. J., Cao, Z., Catalanotti, S., Chen, S. Z., Chen, T. L., Cui, S. W., Dai, B. Z., D’Amone, A., Danzengluobu, Null, De Mitri, I., D’Ettorre Piazzoli, B., Di Girolamo, T., Di Sciascio, G., Feng, C. F., Feng, Zhaoyang, Feng, Zhenyong, Gou, Q. B., Guo, Y. Q., He, H. H., Hu, Haibing, Hu, Hongbo, Iacovacci, M., Iuppa, R., Jia, H. Y., Labaciren, Null, Li, H. J., Liu, C., Liu, J., Liu, M. Y., Lu, H., Ma, L. L., Ma, X. H., Mancarella, G., Mari, Stefano Maria, Marsella, G., Mastroianni, S., Montini, Paolo, Ning, C. C., Perrone, L., Pistilli, Pio, Salvini, P., Santonico, R., Shen, P. R., Sheng, X. D., Shi, F., Surdo, A., Tan, Y. H., Vallania, P., Vernetto, S., Vigorito, C., Wang, H., Wu, C. Y., Wu, H. R., Xue, L., Yang, Q. Y., Yang, X. C., Yao, Z. G., Yuan, A. F., Zha, M., Zhang, H. M., Zhang, L., Zhang, X. Y., Zhang, Y., Zhao, J., Zhaxiciren, Null, Zhaxisangzhu, Null, Zhou, X. X., Zhu, F. R., Zhu, Q. Q., Stenkin, Y. u. V., Alekseenko, V. V., Aynutdinov, V., Cai, Z. Y., Guo, X. W., Liu, Y., Rulev, V., Shchegolev, O. B., Stepanov, V., Volchenko, V., Zhang, H., Bartoli, B, Bernardini, Paolo, Bi, Xj, Cao, Z, Catalanotti, S, Chen, Sz, Chen, Tl, Cui, Sw, Dai, Bz, D'Amone, Antonio, Danzengluobu, DE MITRI, Ivan, Piazzoli, Bd, Di Girolamo, T, Di Sciascio, G, Feng, Cf, Feng, Zy, Gou, Qb, Guo, Yq, He, Hh, Hu, H, Iacovacci, M, Iuppa, R, Jia, Hy, Labaciren, Li, Hj, Liu, C, Liu, J, Liu, My, Lu, H, Ma, Ll, Ma, Xh, Mancarella, Giovanni, Mari, Sm, Marsella, Giovanni, Mastroianni, S, Montini, P, Ning, Cc, Perrone, Lorenzo, Pistilli, P, Salvini, P, Santonico, R, Shen, Pr, Sheng, Xd, Shi, F, Surdo, A, Tan, Yh, Vallania, P, Vernetto, S, Vigorito, C, Wang, H, Wu, Cy, Wu, Hr, Xue, L, Yang, Qy, Yang, Xc, Yao, Zg, Yuan, Af, Zha, M, Zhang, Hm, Zhang, L, Zhang, Xy, Zhang, Y, Zhao, J, Zhaxiciren, Zhaxisangzhu, Zhou, Xx, Zhu, Fr, Zhu, Qq, Stenkin, Yv, Alekseenko, Vv, Aynutdinov, V, Cai, Zy, Guo, Xw, Liu, Y, Rulev, V, Shchegolev, Ob, Stepanov, V, Volchenko, V, Zhang, H[ 7 ] . . . Less, Bartoli, Bruno, Catalanotti, Sergio, D'ETTORRE PIAZZOLI, Benedetto, DI GIROLAMO, Tristano, Iacovacci, Michele, Mari, S. M., Montini, P., and Pistilli, P.
- Subjects
Physics - Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Hadron ,Extensive air shower ,FOS: Physical sciences ,Cosmic ray ,01 natural sciences ,Nuclear physics ,EN-detector ,Hadronic component ,RPC ,Thermal neutron ,Astronomy and Astrophysics ,Observatory ,Coincident ,0103 physical sciences ,010306 general physics ,Cosmic-ray observatory ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,Neutron temperature ,Air shower ,High Energy Physics::Experiment ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
We report on a measurement of thermal neutrons, generated by the hadronic component of extensive air showers (EAS), by means of a small array of EN-detectors developed for the PRISMA project (PRImary Spectrum Measurement Array), novel devices based on a compound alloy of ZnS(Ag) and $^{6}$LiF. This array has been operated within the ARGO-YBJ experiment at the high altitude Cosmic Ray Observatory in Yangbajing (Tibet, 4300 m a.s.l.). Due to the tight correlation between the air shower hadrons and thermal neutrons, this technique can be envisaged as a simple way to estimate the number of high energy hadrons in EAS. Coincident events generated by primary cosmic rays of energies greater than 100 TeV have been selected and analyzed. The EN-detectors have been used to record simultaneously thermal neutrons and the air shower electromagnetic component. The density distributions of both components and the total number of thermal neutrons have been measured. The correlation of these data with the measurements carried out by ARGO-YBJ confirms the excellent performance of the EN-detector., 35 pages, 16 figures
- Published
- 2016
41. Investigating hadronic cores of exstensive air showers at the CARPET-2 array
- Author
-
O. I. Mikhailova, D. D. Dzhappuev, Yu. V. Stenkin, V. B. Petkov, A. U. Kudzhaev, and V. I. Volchenko
- Subjects
Physics ,Particle physics ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Hadron ,Astrophysics::Instrumentation and Methods for Astrophysics ,General Physics and Astronomy ,Magnetic detector ,Neutron temperature ,Nuclear physics ,Air shower ,Cascade ,Observatory ,High Energy Physics::Experiment ,Neutrino ,Nuclear Experiment - Abstract
Characteristics of the hadronic component of exstensive air shower (EAS) trunks are investigated at the CARPET-2 array of the Baksan Neutrino Observatory, Institute for Nuclear Research, Russian Academy of Sciences. In this work, we study showers with axes that located within its muon detector (MD). We discuss the procedure for selecting such showers in our experiment. The relationship between the number of thermal neutrons detected by heat detectors installed in the muon detector’s tunnel and the total energy of a cascade generated by hadrons in the magnetic detector’s absorbent matter is presented.
- Published
- 2014
42. EAS thermal neutron detection with the PRISMA-LHAASO-16 experiment
- Author
-
V. I. Stepanov, J.-D. Yao, Bing-Bing Li, E.I. Pozdnyakov, Dangzengluobu, F.-Z. Shen, R. Zhou, Yu. V. Stenkin, Q. Gao, Minghui Liu, Victor Alekseenko, Shuwang Cui, S.-H. Feng, Ye Liu, Ya.V. Yanin, Ya.Yu. He, Tao Chen, Oleg Shchegolev, Q.-C. Huang, and Xinhua Ma
- Subjects
Physics ,Nuclear reaction ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Cosmic ray ,Scintillator ,01 natural sciences ,Particle detector ,Neutron temperature ,Nuclear physics ,Air shower ,0103 physical sciences ,Neutron detection ,Neutron ,010303 astronomy & astrophysics ,Instrumentation ,Mathematical Physics - Abstract
EAS (extensive air shower) thermal neutron measurement gives advantages to study energy and mass composition of primary cosmic rays especially in the knee region. After the success of the PRISMA-YBJ experiment, we build a new EAS thermal neutron detection array at Tibet University, Lhasa, China (3700 m a.s.l.) in March, 2017. This prototype array so called "PRISMA-LHAASO-16" consists of 16 EAS EN-detectors ("EN" is abbreviation for electron and neutron) measuring two main EAS components: hadronic and electromagnetic ones. Different from PRISMA-YBJ, these detectors use a thin layer of a novel type of ZnS(Ag) scintillator alloyed with natural boron compound for thermal neutron capture. PRISMA-LHAASO-16 will be moved to the LHAASO site in the near future. In this paper, we introduce principle of the detection technique, deployment of the array, and the test results of the array.
- Published
- 2017
43. On special features of the longitudinal development of extensive air showers and on the spectrum of cosmic rays
- Author
-
Yu. V. Stenkin
- Subjects
Longitudinal development ,Physics ,Nuclear and High Energy Physics ,Air shower ,Astrophysics::High Energy Astrophysical Phenomena ,Computer Science::Neural and Evolutionary Computation ,Energy spectrum ,Cosmic ray ,Astrophysics ,Phenomenology (particle physics) ,Atomic and Molecular Physics, and Optics - Abstract
It is shown that, in the development of an extensive air shower (EAS) initiated by primary cosmic rays in the Earth’s atmosphere, there is a special feature that sterms from the violation of equilibrium between EAS components and whose inclusion requires revising both EAS phenomenology and the existing experimental data obtained by indirectly measuring the energy spectrum of cosmic rays by the EAS method.
- Published
- 2008
44. Analysis of variations in the thermal neutron flux at an altitude of 1700 m above sea level
- Author
-
D. D. Dzhappuev, O. I. Mikhailova, Victor Alekseenko, Yu. V. Stenkin, V. V. Kuzminov, V. A. Kozyarivsky, and A. U. Kudzhaev
- Subjects
Physics ,Neutron monitor ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Hadron ,General Physics and Astronomy ,chemistry.chemical_element ,Radon ,Scintillator ,Atmospheric sciences ,Neutron temperature ,Physics::Geophysics ,Thermal neutron flux ,Altitude ,chemistry ,Physics::Atmospheric and Oceanic Physics ,Sea level - Abstract
The results of detection of thermal neutron flux by a large open scintillation detector of thermal neutrons are reported. Detailed analysis of the experimental data is performed. Meteorological, astronomical, and geophysical aspects of the variations observed are considered.
- Published
- 2007
45. Neutrons in extensive air showers
- Author
-
D. D. Djappuev, J. F. Valdés-Galicia, and Yu. V. Stenkin
- Subjects
Physics ,Nuclear physics ,Nuclear and High Energy Physics ,Physics::Instrumentation and Detectors ,Observatory ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Neutron source ,Neutron ,Detector array ,Neutrino ,Atomic and Molecular Physics, and Optics ,Neutron temperature - Abstract
The main properties of the so-called neutron bursts produced by the passage of extensive air showers (EASs) through a detector array and the properties of these EASs are considered using the experiments that are being or have been carried out previously with the Carpet-2 array at Baksan Neutrino Observatory of the Institute for Nuclear Research, Russian Academy of Sciences, and at Cosmic-Ray Station of UNAM in Mexico as examples. We show that no exotic processes are required to explain the nature of neutron bursts. Based on a working prototype of the previously proposed MULTICOM array, we also show that this phenomenon can be successfully used in studying the EAS hadronic component and that adding special thermal neutron detectors can improve significantly the capabilities of the array for EAS study.
- Published
- 2007
46. Spatial distribution of aligned muons in groups
- Author
-
A. L. Tsyabuk, Yu. V. Stenkin, and R. A. Mukhamedshin
- Subjects
Physics ,Scintillation ,Muon ,Period (periodic table) ,Physics::Instrumentation and Detectors ,Hadron ,General Physics and Astronomy ,Spatial distribution ,law.invention ,Nuclear physics ,Telescope ,law ,High Energy Physics::Experiment ,Line (formation) - Abstract
The phenomenon of alignment along one line for the highest energy secondary particles in the γ-ray-hadron families was observed for the first time in the “Pamir” experiment using the x-ray emulsion chambers and was related to coplanar production of secondary particles at energy E 0 > 1016 eV. The distributions of distances between the muon pairs in the muon groups are obtained using the Baksan underground scintillation telescope of the Institute for Nuclear Research (Russian Academy of Sciences) for the threshold energies of 0.85–3.2 TeV for the period of 7.7 years. A difference between spatial distributions of all groups and aligned groups was not detected.
- Published
- 2007
47. Neutrons in extensive air showers
- Author
-
A. U. Kudzhaev, D. D. Dzhappuev, V. I. Volchenko, O. I. Mikhailova, and Yu. V. Stenkin
- Subjects
Physics ,Scintillation ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Nuclear Theory ,Detector ,General Physics and Astronomy ,Flux ,Neutron temperature ,Nuclear physics ,Observatory ,Scintillation counter ,High Energy Physics::Experiment ,Neutron ,Neutrino ,Nuclear Experiment - Abstract
The first results of measurements of the thermal-neutron flux in extensive air showers (EASs) using an unshielded scintillation thermal-neutron detector in the Multicom prototype array at the Baksan Neutrino Observatory of the Institute for Nuclear Research are reported. The operating capacity of the new method for studying the EAS hadron component via detection of thermal neutrons and good prospects of this method are demonstrated.
- Published
- 2007
48. Alekseenkoet al.Reply
- Author
-
I. I. Yashin, Victor Alekseenko, V. P. Sulakov, D. M. Gromushkin, W. Fulgione, Yu. V. Stenkin, Giacomo Bruno, F. Arneodo, A. Di Giovanni, Oleg Shchegolev, and V. I. Stepanov
- Subjects
Information retrieval ,Computer science ,General Physics and Astronomy ,Neutron source - Published
- 2015
49. Study of the hadronic component of extensive air showers at the Carpet-2 EAS array
- Author
-
V. B. Petkov, A. U. Kudzhaev, Yu. V. Stenkin, D. D. Dzhappuev, and A. S. Lidvanskii
- Subjects
Physics ,Particle physics ,Muon ,Physics and Astronomy (miscellaneous) ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,High Energy Physics::Phenomenology ,Hadron ,Nuclear physics ,Observatory ,Component (UML) ,High Energy Physics::Experiment ,Neutrino ,Nuclear Experiment ,Zenith ,Muon detector - Abstract
A method for the detection of hadrons with a muon detector at the Carpet-2 EAS array (Baksan Neutrino Observatory, Institute for Nuclear Research, Russian Academy of Sciences) has been described. Events induced by cosmic-ray hadrons have a signature that makes it possible to reliably distinguish them from muons. The characteristics of the hadronic component of extensive air showers with Ne ≥ 105 have been presented.
- Published
- 2013
50. A novel type of EAS recording array: First results
- Author
-
Yu. V. Stenkin, Victor Alekseenko, V. I. Volchenko, D. M. Gromushkin, V. I. Stepanov, A. A. Petrukhin, O. V. Shchegolev, and I. I. Yashin
- Subjects
Physics ,Nuclear physics ,Air shower ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,General Physics and Astronomy ,Cosmic ray ,Neutron ,Aerospace engineering ,business ,Neutron temperature - Abstract
The prototype of a novel type EAS (extensive air shower) recording and investigation array (the PRISMA project) is created on the basis of the NEVOD experimental complex through cooperation between Institute for Nuclear Research, Russian Academy of Sciences, and the National Research Nuclear University MEPhI. The prototype (ProtoPRISMA) consists of thirty-two en-detectors sensitive to EAS electromagnetic (e) and hadronic (via the registration of thermal neutrons) (n) components. The array is designed to develop and to test a new method of EAS investigation using neutron and electromagnetic components and to obtain preliminary data on the spectrum and composition of cosmic rays.
- Published
- 2013
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.