Vehicular networks have attracted a lot of research attention in the last decades. The main goal of vehicular communication is to ensure road safety by enabling the peri- odic communications between vehicles and between vehicles and other participants, such as roadside units.Cellular-Vehicle-to-Everything (C-V2X) is a leading technology for vehicular net- works. LTE-V2X is the first C-V2X technology, followed by 5G-V2X, and in both, resource allocation mechanisms play an important role in their performance. The resource allocation algorithms proposed in C-V2X must meet the requirements of V2X applications.Certainly, the safety-related applications are the most critical and time-constrained V2X applications. For this reason, in the first part of this thesis, we propose a clustering-based resource allocation algorithm for safety V2V communications, the Maximum Inter-Centroids Reuse Distance (MIRD), which aims to improve the reli- ability of safety V2V communications.In the second part of this thesis, we address resource allocation in 5G-V2X technology. Before performing resource allocation in 5G-V2X, we first consider the flexibility of the NR frame structure of 5G by focusing our interest on the 5G numerology concept. Therefore, we first investigate the impact of 5G numerologies on V2X application performance. Through simulations, we showed that choosing the appropriate numerology is a trade-off between V2X applications requirements, Inter-Carrier Interference (ICI) and Inter-Symbol Interference (ISI).Next, we propose a new resource allocation algorithm, namely the Priority and Satisfaction-based Resource Allocation in Mixed Numerology (PSRA-MN). In the PSRA-MN algorithm, we first select the appropriate numerology considering the channel conditions and the vehicle speed. Then, we apply a prioritization policy in favor of the safety-related traffic to ensure the required resources for the safety- related traffic, and the remaining resources after the safety allocation are optimally allocated to the non-safety vehicles so that the average satisfaction rate is maxi- mized. The proposed PSRA-MN algorithm is validated by simulations. The ob- tained results show that PSRA-MN outperforms the traditional resource allocation algorithms in terms of average allocation rate, average satisfaction rate and average delay., Les réseaux véhiculaires ont connu un vrai progrès technologique dans le domaine de la recherche scientifique au cours des dernières décennies. L’intégration des technologies de communications sans fil dans le domaine du transport a abouti à l’émergence d’un nouveau paradigme, à savoir les communications Vehicle-to-Everything (V2X). Ce dernier signifie les communications entre véhicules et tout autre objet. L’objectif primordial des commu- nications véhiculaires, est d’assurer la sécurité routière à travers l’échange des messages périodiques entre les véhicules et entre les véhicules et d’autres participants, tels que les unités de bord de route ou les piétons.La technologie C-V2X (Cellular-Vehicle-to-Everything) est une technologie émergente pour les réseaux véhiculaires standardisée par la 3GPP, dans laquelle les communications véhiculaires se basent sur les réseaux cellulaires. Le LTE-V2X est la première technologie C-V2X, suivie par la 5G-V2X. Les mécanismes d’allocation des ressources jouent un rôle important dans les performances des communications V2X. Pour cette raison, les algo- rithmes d’allocation des ressources proposés pour la technologie C-V2X doivent fortement répondre aux exigences des applications véhiculaires. Cependant, les applications liées à la sécurité routière sont les applications véhiculaires les plus critiques en termes de fiabilité et en termes de temps de latence. Pour cette raison, dans la première partie de cette thèse, nous proposons un algorithme d’allocation des ressources en LTE-V2X qui se base sur la technique du "clustering". Cet algorithme, nommé MIRD (Maximum Inter-Centoid Reuse Distance), vise à améliorer la fiabilité des communications véhiculaires de type sécurité routière.Dans la deuxième partie de cette thèse, nous abordons l’allocation des ressources radio dans la technologie 5G-V2X. Avant d’entamer le processus d’allocation des ressources radio en 5G-V2X, nous nous intéressons d’abord en premier lieu à la flexibilité de la trame radio de la 5G en concentrant notre intérêt sur le concept de numérologie. À cette fin, nous étudions d’abord l’impact du choix de la numérologie sur les performances des applications véhiculaires. Par le biais de simulations, nous avons abouti à prouver que le choix de la numérologie appropriée est un compromis entre les exigences des applications véhiculaires, les interférences inter-porteuses et les interférences inter-symboles. En deuxième lieu, nous proposons un algorithme d’allocation des ressources en considérant à la fois le trafic de sécurité routière et celui non lié à la sécurité routière. Dans cet algorithme, nommé PSRA-MN (Priority and Satisfaction-based Resource Allocation with Mixed Numerology), nous procédons d’abord au choix de la numérologie appropriée en tenant en compte les conditions du canal radio et la vitesse du véhicule. Ensuite, nous appliquons une politique de priorisation en faveur du trafic lié à la sécurité routière afin de garantir les ressources demandées par ce type de trafic. Puis, les ressources restantes sont allouées de manière optimale aux véhicules dont le trafic est non lié à la sécurité routière afin de maximiser le taux de satisfaction moyen de ces véhicules. L’algorithme PSRA-MN est validé par des simulations. Les résultats obtenus montrent que cet algorithme permet d’atteindre de meilleures performances en comparaison avec les algorithmes traditionnels, tel que le MAX-C/I, en termes de taux d’allocation moyen, de taux de satisfaction moyen, et de temps de latence moyen.