1. Kinetic study of hydrogen lateral diffusion at high temperature in a directly-bonded InP-SiO 2 /Si substrate
- Author
-
Loic Sanchez, Thierry Baron, S. David, V Muffato, Franck Bassani, Frank Fournel, Christophe Jany, C Besancon, Jean Decobert, J-P Le Goec, Cecilia Dupre, Nicolas Vaissiere, Laboratoire des technologies de la microélectronique (LTM ), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Alcatel-Thales III-V Lab (III-V Lab), THALES, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Alcatel-Thalès III-V lab (III-V Lab), THALES-ALCATEL, Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), THALES [France], THALES [France]-ALCATEL, Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), and Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)
- Subjects
Materials science ,Silicon ,chemistry.chemical_element ,Bioengineering ,02 engineering and technology ,Direct bonding ,010402 general chemistry ,Epitaxy ,7. Clean energy ,01 natural sciences ,General Materials Science ,Wafer ,Metalorganic vapour phase epitaxy ,Electrical and Electronic Engineering ,ComputingMilieux_MISCELLANEOUS ,[PHYS]Physics [physics] ,Silicon photonics ,business.industry ,Mechanical Engineering ,Heterojunction ,General Chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Outgassing ,chemistry ,Mechanics of Materials ,Optoelectronics ,0210 nano-technology ,business - Abstract
Hybrid integration of III-V materials onto silicon by direct bonding technique is a mature and promising approaches to develop advanced photonic integrated devices into the silicon photonics platform. In this approach, the III-V material stack is grown on an InP wafer in a unique epitaxial step prior to the direct bonding process onto the silicon-on-insulator wafer. Currently, no additional epitaxial regrowth steps are implemented after bonding. This can be seen as a huge limitation as compared to the III-V on III-V wafer mature technology where multi-regrowth steps are most often implemented. In this work, we have studied the material behavior of an InP membrane on silicon (InPoSi) under epitaxial regrowth conditions by metal-organic vapor phase epitaxy (MOVPE). MOVPE requires high-temperature elevation, typically above 600 °C. We show for the first time the appearance of voids at 400 °C in an InP seed (100 nm) directly-bonded onto a thermally oxidized Si substrate despite the use of a thick SiO2 oxide (200 nm) at the bonding interface. This phenomenon is explained by a weakening of the bonding interface while high-pressurized hydrogen is present. A kinetic study of the hydrogen lateral diffusion is carried out, enabling the assessment of its lateral diffusion length. To overcome the void formation, highly efficient outgassing trenches after bonding are demonstrated. Finally, high-quality AlGaInAs-based multi-quantum well (MQW) heterostructure surrounded by two InP layers was grown by MOVPE on InPoSi template patterned with outgassing trenches. This process is not only compatible with MOVPE regrowth conditions (650 °C under PH3) but also with conventional fabrication processes used for photonic devices.
- Published
- 2020
- Full Text
- View/download PDF