1. Patrones de progresión de la actividad física en pacientes con EPOC
- Author
-
Koreny, M, Demeyer, H, Benet, M, Arbillaga-Etxarri, A, Balcells, E, Barberan-Garcia, A, Gimeno-Santos, E, Hopkinson, NS, De Jong, C, Karlsson, N, Louvaris, Z, Polkey, MI, Puhan, MA, Rabinovich, RA, Rodríguez-Roisin, R, Vall-Casas, P, Vogiatzis, I, Troosters, T, Garcia-Aymerich, J, Urban Training Study Group and PROactive Consortium members, Urban Training Study Group, Delgado, A, Torrent-Pallicer, J, Vilaró, J, Chiaradía, DAR, Marín, A, Ortega, P, Celorrio, N, Teagudo, MM, Montellà, N, Muñoz, L, Toran, P, Simonet, P, Jané, C, Martín-Cantera, C, Borrell, E, PROactive Consortium members, Ivanoff, N, Corriol-Rohou, S, Jarrod, I, Erzen, D, Brindicci, C, Higenbottam, T, Scuri, M, McBride, P, Kamel, N, Tabberer, M, Dobbels, F, De Boer, P, Kulich, K, Glendenning, A, Rudell, K, Wilson, FJ, Nikai, E, Van der Molen, T, MacNee, B, Frei, A, Groningen Research Institute for Asthma and COPD (GRIAC), and EU/IMI Joint Undertaking
- Subjects
Male ,PROactive Consortium members ,Respiratory System ,Pulmonary Disease, Chronic Obstructive ,0302 clinical medicine ,Medicine and Health Sciences ,Pooled data ,Determinants ,COPD ,biology ,Patrones de progresión ,General Medicine ,Lama ,Análisis de conglomerados ,Respiratory Function Tests ,MPOC ,Female ,EPOC ,Determinantes ,Pulmonary and Respiratory Medicine ,medicine.medical_specialty ,Patrons de progressió ,Physical activity ,616.2 ,03 medical and health sciences ,FEV1/FVC ratio ,Cluster analysis ,Multinomial logistic regression model ,Internal medicine ,Urban Training Study Group ,medicine ,Humans ,Anàlisi de clústers ,In patient ,Exercise ,Patterns of progression ,business.industry ,1103 Clinical Sciences ,medicine.disease ,biology.organism_classification ,C600 ,Urban Training Study Group and PROactive Consortium members ,B900 ,Dyspnea ,030228 respiratory system ,Usual care ,Actividad física ,Sedentary Behavior ,Activitat física ,business - Abstract
Introduction: Although mean physical activity in COPD patients declines by 400–500 steps/day annually, it is unknown whether the natural progression is the same for all patients. We aimed to identify distinct physical activity progression patterns using a hypothesis-free approach and to assess their determinants. Methods: We pooled data from two cohorts (usual care arm of Urban Training [NCT01897298] and PROactive initial validation [NCT01388218] studies) measuring physical activity at baseline and 12 months (Dynaport MoveMonitor). We identified clusters (patterns) of physical activity progression (based on levels and changes of steps/day) using k-means, and compared baseline sociodemographic, interpersonal, environmental, clinical and psychological characteristics across patterns. Results: In 291 COPD patients (mean ± SD 68 ± 8 years, 81% male, FEV1 59 ± 19%pred) we identified three distinct physical activity progression patterns: Inactive (n = 173 [59%], baseline: 4621 ± 1757 steps/day, 12-month change (Δ): −487 ± 1201 steps/day), Active Improvers (n = 49 [17%], baseline: 7727 ± 3275 steps/day, Δ: + 3378 ± 2203 steps/day) and Active Decliners (n = 69 [24%], baseline: 11 267 ± 3009 steps/day, Δ: −2217 ± 2085 steps/day). After adjustment in a mixed multinomial logistic regression model using Active Decliners as reference pattern, a lower 6-min walking distance (RRR [95% CI] 0.94 [0.90–0.98] per 10 m, P = .001) and a higher mMRC dyspnea score (1.71 [1.12–2.60] per 1 point, P = .012) were independently related with being Inactive. No baseline variable was independently associated with being an Active Improver. Conclusions: The natural progression in physical activity over time in COPD patients is heterogeneous. While Inactive patients relate to worse scores for clinical COPD characteristics, Active Improvers and Decliners cannot be predicted at baseline. Introducción: Aunque la actividad física en pacientes con EPOC declina una media anual de 400-500 pasos/día, se desconoce si esta progresión es igual en todos los pacientes. Este estudio pretendió identificar los patrones de progresión de la actividad física mediante métodos libres de hipótesis y evaluar sus determinantes. Métodos: Se estudiaron 291 pacientes con EPOC estable (media ± DE: 68 ± 8 años, 81% hombres, VEMS 59 ± 19%pred) de dos cohortes europeas con actividad física basal y a 12 meses (acelerómetro Dynaport MoveMonitor). Se identificaron conglomerados (patrones) de progresión de actividad física basados en los niveles y cambios de pasos/día usando k-means, y se compararon entre patrones las características sociodemográficas, interpersonales, ambientales, clínicas y psicosociales basales. Resultados: Se identificaron tres patrones: inactivo (n = 173 [59%], basal: 4.621 ± 1.757 pasos/día, cambio en 12 meses (Δ): −487 ± 1.201 pasos/día), activo que aumenta (n = 49 [17%], basal: 7.727 ± 3.275 pasos/día, Δ: +3.378 ± 2.203 pasos/día) y activo que reduce (n = 69 [24%], basal: 11.267 ± 3.009 pasos/día, Δ: −2.217 ± 2.085 pasos/día). La distancia en la prueba de la marcha de 6 minutos (6MWD) y la disnea se asociaron independientemente con ser inactivo: RRR [IC 95%] 0,94 [0,90-0,98] por cada 10 m de 6MWD (p = 0,001) y 1,71 [1,12-2,60] por cada punto en la escala mMRC (p = 0,012), respectivamente, en comparación con el patrón activo que reduce. No se encontraron variables basales independientemente asociadas con ser activo que aumenta. Conclusiones: La progresión natural de la actividad física en pacientes con EPOC es heterogénea. Mientras que el patrón de pacientes inactivo se relaciona con peores características clínicas de EPOC, no se pudo predecir la evolución de los activos a aumentar o reducir. info:eu-repo/semantics/acceptedVersion
- Published
- 2021