1. Assessment of Xenes for their integration into a plasmonic device platform
- Author
-
BONAVENTURA, ELEONORA, Bonaventura, E, and BONERA, EMILIANO
- Subjects
Proprietà termiche ,2D Material ,Xenes ,Materiali 2D ,Proprietà ottiche ,Xeni ,Optical propertie ,Thermal propertie ,Plasmonic ,Plasmonica ,FIS/03 - FISICA DELLA MATERIA - Abstract
La tesi si pone l'obiettivo di studiare le proprietà ottiche degli Xeni. Gli Xeni, reticoli monoelementali artificiali simili al grafene, hanno mostrato sin dalla loro scoperta grandi potenzialità per applicazioni negli ambiti dell'elettronica e della fotonica. Purtroppo, il loro utilizzo è ancora limitato dall'elevata reattività chimica e dai forti effetti di ibridazione con i substrati nativi. Conoscere la risposta ottica o termo-ottica degli Xeni, escludendo o controllando eventuali effetti del substrato, è quindi funzionale allo sviluppo di nuove tecnologie. La ricerca è stata condotta nell'ambito del progetto X-Fab (ERC COG Grant n. 772261), presso i laboratori CNR-IMM di Agrate Brianza. In questo studio vengono esaminate diverse configurazioni a base di Xene, combinando tecniche di analisi in situ (XPS e LEED) e di spettroscopia ottica (FTIR, Vis-UV e Raman), con lo scopo di determinarne la risposta ottica e valutare l'integrazione degli Xeni in un dispositivo che ne sfrutti le potenzialità. La prima configurazione analizzata prevede l'introduzione di un substrato isolante e otticamente trasparente, come lo zaffiro, a sostituzione del più diffuso argento. Lo zaffiro, nella sua orientazione (0001) presenta un reticolo a simmetria esagonale commensurato a quello di silicene e stanene. La conducibilità ottica di nano-film di stagno cresciuti tramite MBE è stata ricavata da misure di trasmittanza e riflettanza, acquisite tra 0.01 e 6.5 eV. L'analisi spettrale e il successivo confronto con dati teorici già presenti in letteratura hanno permesso di identificare delle caratteristiche non banali, in parte riconducibili allo stanene. L'analisi chimica eseguita in situ durante la crescita ha però evidenziato anche la presenza di una componente dello stagno ossidata dovuta ad effetti del substrato. Il problema emerso è stato affrontato introducendo uno strato di grafene tra i film di stagno e l'Al2O3. L'introduzione dello strato di grafene ha permesso di evitare l'ossidazione dello stagno, come confermato dall'analisi XPS. I risultati emersi dall'analisi ottica supportano invece la possibilità di stabilizzare la fase α dello stagno a temperatura ambiente proprio grazie all'introduzione dello strato di grafene. In modo concettualmente simile a quanto fatto per il film sottili di stagno con il grafene, è stata valutata la possibilità di disaccoppiare il silicene dall'argento introducendo tra i due materiali uno strato di silicene. La risposta ottica del silicene epitassiale è stata studiata attraverso la spettroscopia Raman opto-termica e con misure di riflettanza ottica. I risultati ottenuti supportano l'efficacia dello strato di stanene nel rompere l'interazione tra silicene e substrato d'argento. Inoltre, sebbene si tratti di una valutazione indiretta della risposta termica, i risultati ottenuti dall’analisi Raman aprono la strada alla determinazione delle proprietà termiche del silicene supportato. Esperimenti svolti su nano-film di silicio cresciuti epitassialmente su zaffiro hanno evidenziato un comportamento della conducibilità ottica riconducibile alla presenza di elettroni di Dirac come ci si aspetta per il silicene. Sulla base di questi risultati, la configurazione Xene-su-Al2O3 è stata sfruttata per valutare l'integrabilità degli Xeni in un dispositivo che permettesse di osservare sperimentalmente la risposta plasmonica di questi materiali. Sono stati fatti dei test di trasferimento tecnologico sulla piattaforma Xene-su-Al2O3, realizzando reticoli periodici con fotolitografia ottica e implementando un sistema di top gating a base di liquido ionico. Nonostante gli esperimenti non abbiano portato alla realizzazione di un dispositivo funzionante, i punti critici emersi dimostrano che il margine per ottenere miglioramenti è ancora ampio. The aim of this thesis is to investigate the optical properties of Xenes. Since their discovery, Xenes, artificial graphene-like single-element lattices, have shown great potential for applications in electronics and photonics. Unfortunately, their use is still limited by their high chemical reactivity and strong hybridisation effects with native substrates. Understanding the optical or thermo-optical response of Xenes, and thus excluding or controlling possible substrate effects, is therefore crucial for the development of new technologies. The research was carried out as part of the X-Fab (ERC COG Grant n. 772261) project at the CNR-IMM laboratories in Agrate Brianza. In this study, several Xenes-based configurations are investigated using a combination of in situ analysis (XPS and LEED) and optical spectroscopy (FTIR, Vis-UV and Raman) techniques to determine their optical response and evaluate the integration of Xenes into a device that exploits their potential. The first configuration analyzed involved the introduction of an insulating and optically transparent substrate, such as sapphire (Al2O3), to replace the more common silver. Sapphire, in its (0001) orientation, has a hexagonal symmetry lattice commensurate to that of silicene and stanene. The optical conductivity of tin nano-sheets grown by MBE was derived from transmittance and reflectance measurements. The measurements were carried out covering a range from 0.01 to 6.5 eV. Spectral analysis and subsequent comparison with theoretical data from the literature made it possible to identify non-trivial features, some of which can be attributed to stanene. However, in situ chemical analysis during growth also revealed the presence of an oxidised tin component due to substrate effects. This issue was solved by introducing a graphene layer between the tin films and Al2O3. The introduction of the graphene layer prevented oxidation of the tin, as confirmed by XPS analysis. The results of the optical analysis, on the other hand, support the possibility of stabilising the α phase of tin at room temperature by introducing the graphene buffer layer. The possibility of decoupling silicene from silver by introducing a layer of stanene between the two materials was evaluated. The optical response of the epitaxial silicene was studied using opto-thermal Raman spectroscopy and optical reflectance measurements. The results support the effectiveness of the stanene layer in breaking the interaction between silicene and the silver substrate. Furthermore, although this is an indirect evaluation of the thermal response, the results obtained from the Raman analysis pave the way to the determination of the thermal properties of the supported silicene. Previous experiments on silicon nano-sheets epitaxially grown on sapphire showed signature of graphene-like behavior in the low-energy optical conductivity. The Dirac-like electrodynamics is expected from the band structure of silicene. Based on these results, the Xene-on-Al2O3 configuration was used to evaluate the integrability of Xenes in a device that would allow the observation of the Dirac plasmonic response of these materials. Technology transfer tests were carried out on the Xene-on-Al2O3 platform by realizing periodic patterns using optical photolithography and implementing an ionic liquid-based top gating system. The experiments did not result in a working device. However, the critical points that emerged show that there is still plenty of room for improvement.
- Published
- 2023