34 results on '"TAMMARU, TOOMAS"'
Search Results
2. Nola atomosa Õunap & Choi & Matov & Tammaru 2021, stat. rev
- Author
-
Õunap, Erki, Choi, Sei-Woong, Matov, Alexey, and Tammaru, Toomas
- Subjects
Lepidoptera ,Insecta ,Nola atomosa ,Arthropoda ,Nolidae ,Animalia ,Nola ,Biodiversity ,Taxonomy - Abstract
Nola atomosa (Bremer, 1861) stat. rev. (Figures 19–30, 45–46, 52–53, 56) Glaphyra atomosa Bremer, 1861, Bulletin de l’Académie Impériale des sciences de St-Petersbourg 3: 491. LT: Amur, Russian Federation = Nola candidalis Staudinger, 1892, Mémoires sur les Lépidoptères 6: 258. TL: Amur, Russian Federation syn. nov. = Nola shin Inoue, 1982, Moths of Japan: 661. TL: Shibecha, Kushiro, Hokkaido, Japan syn. nov.
- Published
- 2021
- Full Text
- View/download PDF
3. Nola aerugula
- Author
-
��unap, Erki, Choi, Sei-Woong, Matov, Alexey, and Tammaru, Toomas
- Subjects
Lepidoptera ,Insecta ,Arthropoda ,Nolidae ,Nola aerugula ,Animalia ,Nola ,Biodiversity ,Taxonomy - Abstract
Nola aerugula (H��bner, [1793]) (Figures 31���42, 47���48, 54, 57) Phalaena Bombyx aerugula H��bner,[1793], SammlungAuserlesener V��gel und Schmetterlinge,mit ihrem Namen Herausgegeben auf Hundert nach der Natur Ausgemalten Kupfern: 11, pl. 61. LT: [Europe] = Pyralis centonalis H��bner, 1796, Sammlung Europ��ischer Schmetterlinge 6: pl. 3, fig. 15. LT: [Europe] = Hercyna scabralis Eversmann, 1842, Bulletin de la Soci��t�� Imp��riale des Naturalistes de Moscou, 15: 562. LT: Russia = Nola littoralis Paux, 1901, Bulletin scientifique de la France et de la Belgique 35: 479. LT: Dunkerque, France, Published as part of ��unap, Erki, Choi, Sei-Woong, Matov, Alexey & Tammaru, Toomas, 2021, Description of Nola estonica sp. nov., with comparison to N. aerugula and N atomosa stat. rev. (Lepidoptera, Nolidae, Nolinae), pp. 401-424 in Zootaxa 5082 (5) on page 412, DOI: 10.11646/zootaxa.5082.5.1, http://zenodo.org/record/5794916, {"references":["Eversmann, E. (1842) Quaedam lepidopterorum species novae, in Rossia orientali observatae, nunc describae et depictae. Bulletin de la Societe Imperiale des Naturalistes de Moscou, 15, 543 - 565."]}
- Published
- 2021
- Full Text
- View/download PDF
4. Nola atomosa ��unap & Choi & Matov & Tammaru 2021, stat. rev
- Author
-
��unap, Erki, Choi, Sei-Woong, Matov, Alexey, and Tammaru, Toomas
- Subjects
Lepidoptera ,Insecta ,Nola atomosa ,Arthropoda ,Nolidae ,Animalia ,Nola ,Biodiversity ,Taxonomy - Abstract
Nola atomosa (Bremer, 1861) stat. rev. (Figures 19���30, 45���46, 52���53, 56) Glaphyra atomosa Bremer, 1861, Bulletin de l���Acad��mie Imp��riale des sciences de St-Petersbourg 3: 491. LT: Amur, Russian Federation = Nola candidalis Staudinger, 1892, M��moires sur les L��pidopt��res 6: 258. TL: Amur, Russian Federation syn. nov. = Nola shin Inoue, 1982, Moths of Japan: 661. TL: Shibecha, Kushiro, Hokkaido, Japan syn. nov., Published as part of ��unap, Erki, Choi, Sei-Woong, Matov, Alexey & Tammaru, Toomas, 2021, Description of Nola estonica sp. nov., with comparison to N. aerugula and N atomosa stat. rev. (Lepidoptera, Nolidae, Nolinae), pp. 401-424 in Zootaxa 5082 (5) on page 411, DOI: 10.11646/zootaxa.5082.5.1, http://zenodo.org/record/5794916
- Published
- 2021
- Full Text
- View/download PDF
5. Nola estonica Ounap 2021, sp. nov
- Author
-
��unap, Erki, Choi, Sei-Woong, Matov, Alexey, and Tammaru, Toomas
- Subjects
Lepidoptera ,Nola estonica ,Insecta ,Arthropoda ,Nolidae ,Animalia ,Nola ,Biodiversity ,Taxonomy - Abstract
Nola estonica ��unap sp. nov. (Figures 1���18, 43���44, 49���51, 55) Type material Holotype: ♀, ESTONIA, Piusa Railway Station, at light, 57��50���20.9������N 27��28���15.0������E, 03.08.2020, leg. E. ��unap, TUZ300299. Paratypes, 82♂♂, 53♀♀. ESTONIA 1♂, P��lvamaa, V��rska, 57��58���N 27��37���E, 19.09.2001, leg. T. Ruben/A. Lindt, IZBE1137190. 1♂, P��lvamaa, Korela, 57��53���N 27��44���E, 01.- 15.07.2010, leg. T. Ruben, IZBE1137191. 1♂, V��rska, ��rsava, 57��56���46���N 27��37���54���E, 19.07.2011, leg. T. Tammaru, DNA voucher E��1488, RCTT. 1♀, Piusa Railway Station, 57��50���30������N 27��27���26������E, 20.07.2011, leg. T. Tammaru, DNA voucher E��1489, RCTT. 1♂, Harjumaa, Mustj��e, 59��19���N 25��28���E, 01.- 19.07.2012, leg. T. Ruben, IZBE1137192. 1♀, M��e-Palo, 57��37���06������N 27��07���26.5������E, 04.07.2012, leg. E. ��unap, DNA voucher E��1490, RCE��. 1♂, Piusa, 57��50���30������N 27��27���18������E, 03.08.2017, leg. I. Taal & T. Tasane, RCIT. 1♂, Karilatsi 1 km W, 58��07���25������N 26��54���05������E, 07.09.2018, leg. T. Tammaru, DNA voucher E��1484, RCTT. 1♂, Parmu, at light, 57��33���53.3���N 27��19���15.4���E, 20.07.2020, leg. E. ��unap, RCE��. 6♂♂, 2♀♀, Piusa Railway Station, 57��50���21������N 27��28���14������E, 27.07.2020, leg. I. Taal & A. Truuverk (incl. 2♂♂, DNA vouchers E��1550, E��1552, used for genetic study), RCIT. 5♂♂, 5♀♀, Piusa Railway Station, 57��50���21������N 27��28���14������E, 27.07.2020, leg. I. Taal & A. Truuverk, RCAT. 48♂♂, 30♀♀, Piusa Railway Station, 57��50���21������N 27��28���14������E, 27.07.2020, leg. I. Taal & A. Truuverk, 2♂♂, 2♀♀ dissected, TUZ300207���TUZ300284. 3♂♂, 3♀♀, Piusa Railway Station, at light, 57��50���20.9������N 27��28���15.0������E, 03.08.2020, leg. E. ��unap (incl. 1♂, DNA voucher E��1529, used for genetic study) RCE��. 13♂♂, 11♀♀, Piusa Railway Station, at light, 57��50���20.9������N 27��28���15.0������E, 03.08.2020, leg. E. ��unap, 2♂♂, 5♀♀ dissected, TUZ300285���TUZ300298, TUZ300300���TUZ300309. Other material examined RUSSIA 1♀, Primorsky region, Kedrovaja Pad, V, L[ight], 43��06���N 131��29���E, 2- 17.08.1997, leg. Laanetu & Viidalepp, dissected, IZBE0106558. 1♂, Amurskaja region, Svobodnenski district, Iverskii zakaznik, 18.06.- 01.07.2010, leg. A. Barbarich, A. Streltsov, P. Osipov, dissected, slide Matov 0589, ZISP. SOUTH KOREA 6♀♀, Mt. Samaksan, Deokduwon-ri, Seo-myon, Chuncheon, Gangwon-do Province, at light, 37��50���11������N 127��37���30������E, 25.06.2016, leg. S. S. Kim, 2 ♀♀ dissected, MNU genital slides no. 1172 and 1173, MNU 5- MNU 10. 1♂ Haesan, Hwacheon-gun, Gangwon-do Province, at light, 38��11'15������N 127��47'18������E, 24.06.2017, leg. S. S. Kim, dissected, MNU genital slide no. 1170, MNU NE1. Description External morphology. Wingspan 15.2-18.1 (average 16.4 �� 1.0 SD, n = 18) mm in males 15.4-19.0 (average 17.2 �� 1.0 SD, n = 16) mm in females. Head white, antennae covered with white scales. Male antennae bipectinate, bearing numerous sensilla on the ventral side. The length of sensilla exceed the diameter of the flagellum. Female antennae filiform. Labial palpi porrect, elongated, more than two times longer than the diameter of the eye, intermixed with light and dark scales on the lateral side, but only white scales present on the medial side. Proboscis present. Thorax white. Forewing elongated, apex rounded. Upperside white. Three tufts of raised scales present along the anterior edge of the cell, the medial and distal tuft always containing at least some dark scales, the proximal tuft sometimes completely white. Subbasal line present as a brown costal blotch, sometimes completely absent. Antemedial line, if present, usually brown, rarely black, jagged, forming an irregular curve towards the termen. A large brown blotch sometimes present on costa proximal to the antemedial line. Medial line absent. Postmedial line brown, rarely black, parallel to costa in the subcostal region, but turns towards inner margin at an acute angle on R 5. Postmedial line almost straight between R 5 and inner margin, with clear darker spots on veins, sometimes proximally accompanied by a light brown band. Subterminal line undulating, light brown to light grey, sometimes completely absent. Terminal line light brown to light grey, sometimes hardly visible, sometimes interrupted by a row of white or yellowish dots on veins. Fringes usually unicolourous, white, light beige or light grey, rarely slightly lighter on veins. Pattern reduced in many specimens, sometimes represented only by a few dark scales on subcostal hair tufts, and as a row of small dark dots referring to postmedial line. Underside unicolourous dark grey in males, white with most veins dark grey and some grey scales diffused between the veins in females. Hindwing with evenly curved termen, apex rounded. Upperside white, subcostal region light grey. In darker specimens wings gradually darkening from white to light grey in subterminal area. Discal spot very weak, formed by a small number of dark scales. Terminal line light grey, interrupted by a row of white or yellowish dots on veins, sometimes hardly visible. Fringes white, light beige or light grey. Underside white, with diffused grey scales mostly present on the anterior half of the wing and on the subterminal area. Discal spot grey. Legs white or grey, darker in males than in females, one pair of tibial spurs present in midlegs, and two pairs in hindlegs of both sexes. Abdomen dorsally light yellowish grey, posterior edges of segments visible as a row of lighter scales. Ventral side of the abdomen light yellowish grey suffused with small number of black scales. Male genitalia. Uncus absent. Tegumen narrow, 1.5 times longer than vinculum. Saccus short and very wide, with rounded tip. Scaphium with two extremely long, parallel, stick-like, sclerotized structures. Valva long, bilobed, costa and ventral margin heavily sclerotized, rounded at both tips. Tip of the ventral lobe of valva extended to a tiny hook. Harpe strong, triangular, spine-like, with a pointed tip. Editum present as a rounded protuberance bearing a number of tiny papilles carrying thin setae, positioned close to base of costa. Transtilla narrow, heavily sclerotized. Juxta plate-like, laterally extended as two arms to dorsal side. Aedeagus almost straight, three times longer than wide, apex ventrally elongated as a thin triangular slat, coecum absent. Vesica straight, slightly wider and longer than aedeagus, with one cornutus. Cornutus short and wide, with a prominent central ridge extending beyond its posterior edge. Eighth tergite with two narrow anterior projections located wide apart from each other, posterior edge of the heavily sclerotized area rounded. Female genitalia. Ovipositor short, very wide; posterior apophyses approximately as long as ovipositor. Anterior apophyses short, their length approximately 2/3 of the length of posterior apophyses. Ostium bursae heavily sclerotized, genital orifice oval, wider than long. Antrum region very short, membranous. Posterior part of ductus bursae moderately sclerotized, the sclerotized region wider than long, its length about 1/5 of the total length of ductus bursae. Middle part of ductus bursae membranous, two times longer than wide, the membrane slightly wrinkled, sometimes with irregular patches of sclerotization. Anterior part of ductus bursae heavily sclerotized, dilated, sclerotization present as irregular longitudinal folds. Corpus bursae ovoid, elongate, 2.5 times longer than wide, with one signum. The posterior part of signum bursae bearing a heavily sclerotized thorn pointing towards the lumen of corpus bursae. Diagnosis. N. estonica (Figures 1���18) differs from N. atomosa by its rather straight postmedial line which is darker on veins and often divided into a row of dark spots. The postmedial line of N. atomosa (Figures 19���30) is strongly undulating and almost unicolourous. Even in very light specimens of N. atomosa the postmedial line is not interrupted into separate spots located on veins. In N. atomosa, fringes are chequered, being white on tips of the veins, and light grey between the veins. Male genitalia of N. estonica (Figures 43 ab, 44ab) and N. atomosa (Figures 45 ab, 46ab) are very similar and cannot be used for reliable identification. However, the 8th tergite of N. estonica has narrow anterior projections that are situated apart from each other (Figures 43c, 44c), while that of N. atomosa usually has wide anterior projections that are located much closer to each other (Figures 45c, 46c). Females of N. estonica can easily be separated from N. atomosa by genitalia dissection, as this species has only one signum in bursa copulatrix, which is located ventrolaterally (Figures 49���51). N. atomosa has an additional smaller signum on the opposite side of bursa copulatrix (Figures 52���53), though the latter may be small, almost transparent and therefore hard to notice. A fine detail characteristic of N. estonica is an inward-pointing thorn on the posterior edge of signum (Figure 55). Though the posterior edge of the larger signum of N. atomosa is also bent inwards (Figure 56), it does not form a distinct narrow thorn. The sclerotized posterior part of ductus bursae is wider than long in N. estonica, but almost rectangular in N. atomosa. N. aerugula (Figures 31���42) can usually be separated from N. estonica by its much darker colouration. Even in very light specimens of N. aerugula the ground colour of forewings is often yellowish, not white, as opposed to the pure white ground colour of N. estonica. Though the postmedial line of N. aerugula is sometimes almost as straight as that of N. estonica, it is not distinctly darker on veins nor divided into a row of spots. The hindwings of N. aerugula are almost unicolourous and darker than those of N. estonica: dark grey in the darkest specimens, light grey in the lightest ones. Male genitalia of N. aerugula (Figures 47a, 48a) differ from those of N. estonica (Figures 43a, 44a) by shorter vinculum, which has length/width ratio of about 0.5 (as opposed to at least 0.6 in N. estonica), and by very short and narrow saccus. There are, however, no differences in the shape of the aedeagus of N. estonica (Figures 43b, 44b) and N. aerugula (Figures 47b, 48b). The 8th tergite of N. estonica has narrow anterior projections that are situated apart from each other (Figures 43c, 44c), while that of N. aerugula usually has wide anterior projections that are located much closer to each other (Figures 47c, 48c). Females of N. estonica can easily be separated from N. aerugula by genitalia dissection, as this species has only one ventrolateral signum on bursa copulatrix (Figures 49���51), but N. aerugula has an additional smaller signum on the opposite side of bursa copulatrix (Figure 54). However, the latter may be small, almost transparent and therefore hard to notice. The larger signum of N. aerugula is often just a flat patch of sclerotization on the wall of bursa copulatrix which is thicker on its posterior edge (Figure 57), but sometimes its posterior edge is bent inwards. Even in the latter case it does not form a distinct narrow inward-pointing thorn which is characteristic to N. estonica. The sclerotized posterior part of ductus bursae is wider than long in N. estonica, but almost rectangular in N. aerugula. Note. Though the hitherto known European and Far Eastern populations of N. estonica are separated by at least 6000 kilometers, we have not found any consistent differences in their morphology. The South Korean and Russian specimens fit well within the intraspecific variation of the Estonian material. Biology. N. estonica appears to be locally common in southeastern Estonia. The majority of the type series were collected from a dry, narrow meadow stripe in the railway corridor that penetrates a landscape dominated by dry pine forest on sandy soil. Whether the species prefers woodland or open habitat is yet unknown, as though the moths were captured on a meadow, they may have flown to light from the nearby forest only 15-20 meters away. In South Korea, the moths were collected in mountainous woodland with mixed coniferous and deciduous trees, and the single contemporary specimen from Russian Far East was taken from mixed forest adjacent to large xerophytic meadows. Most of the hitherto known specimens have been collected in July and early August, but two records from September suggest that partial second brood may exist. Other details of the life cycle and larval foodplants are not known. Etymology. The name estonica refers to Estonia, as the species was first discovered in this country, which is also the area of origin of the type series., Published as part of ��unap, Erki, Choi, Sei-Woong, Matov, Alexey & Tammaru, Toomas, 2021, Description of Nola estonica sp. nov., with comparison to N. aerugula and N atomosa stat. rev. (Lepidoptera, Nolidae, Nolinae), pp. 401-424 in Zootaxa 5082 (5) on pages 408-411, DOI: 10.11646/zootaxa.5082.5.1, http://zenodo.org/record/5794916
- Published
- 2021
- Full Text
- View/download PDF
6. Drepanogynini , Murillo-Ramos, Sihvonen & Brehm 2019, new tribe
- Author
-
Murillo-Ramos, Leidys, Brehm, Gunnar, Sihvonen, Pasi, Hausmann, Axel, Holm, Sille, Ghanavi, Hamid Reza, Õunap, Erki, Truuverk, Andro, Staude, Hermann, Friedrich, Egbert, Tammaru, Toomas, and Wahlberg, Niklas
- Subjects
Lepidoptera ,Insecta ,Arthropoda ,Geometridae ,Animalia ,Biodiversity ,Taxonomy - Abstract
Drepanogynini Murillo-Ramos, Sihvonen & Brehm new tribe LSIDurn:lsid:zoobank.org:act:AA384988-009F-4175-B98C-6209C8868B93 Type genus: Drepanogynis Guenée, (1858) The African genera Thenopa, Sphingomima and Drepanogynis appear as a strongly supported lineage (SH-like, UFBoot2 and RBS = 100). Krüger (1997, p. 259) proposed " Boarmiini and related tribes as the most likely sister group" for Drepanogynis, whereas more recently Drepanogynis was classified in the putative southern hemisphere Nacophorini (Krüger, 2014; Sihvonen, Staude & Mutanen, 2015). In the current phylogeny, Drepanogynis is isolated from Nacophorini sensu stricto and from other southern African genera that have earlier been considered to be closely related to it (Krüger, 2014 and references therein). The other southern African genera appeared to belong to Diptychini in our study. The systematic position of Drepanogynis tripartita (Warren, 1898) has earlier been analyzed in a molecular study (Sihvonen, Staude & Mutanen, 2015). The taxon grouped together with the Palaearctic species of the tribes Apeirini, Theriini, Epionini and putative Hypochrosini. Sihvonen, Staude & Mutanen (2015) noted that Argyrophora trofonia (Cramer, 1779) (representing Drepanogynis group III sensu Krüger, 1999) and Drepanogynis tripartita (representing Drepanogynis group IV sensu Krüger, 2002) did not group together, but no formal changes were proposed. Considering that the current analysis strongly supports the placement of Drepanogynis and related genera in an independent lineage, and the aforementioned taxa in the sister lineage (Apeirini, Theriini, Epionini and putative Hypochrosini) have been validated at tribe-level, we place Drepanogynis and related genera in a tribe of their own. Material examined and taxa included: Drepanogynis mixtaria (Guenée, 1858), D. tripartita, D. determinata (Walker, 1860), D. arcuifera Prout, 1934, D. arcuatilinea Krüger, 2002, D. cnephaeogramma (Prout, 1938), D. villaria (Felder & Rogenhofer, 1875), “ Sphingomima ” discolucida Herbulot, 1995 (genus combination uncertain, see taxonomic notes below), Thenopa diversa Walker, 1855, “ Hebdomophruda ” errans Prout, 1917 (genus combination uncertain, see taxonomic notes below). Taxonomic notes: We choose Drepanogynis Guenée, 1858 as the type genus for Drepanogynini, although it is not the oldest valid name (ICZN Article 64), because extensive literature has been published on Drepanogynis (Krüger, 1997, 1998, 1999, 2014), but virtually nothing exists on Thenopa, Walker, 1855, except the original descriptions of its constituent species. Current results show the urgent need for more extensive phylogenetic studies within Drepanogynini. Thenopa and Sphingomima are embedded within Drepanogynis, rendering it paraphyletic, but our taxon coverage is too limited to propose formal changes in this species-rich group. Drepanogynini, as defined here, are distributed in sub-Saharan Africa. Drepanogynis sensu Krüger (1997, 1998, 1999, 2014) includes over 150 species and it ranges from southern Africa to Ethiopia (Krüger, 2002, Vári, Kroon & Krüger, 2002), whereas the genera Sphingomima (10 species) and Thenopa (four species) occur in Central and West Africa (Scoble, 1999). Sphingomima and Thenopa are externally similar, so the recovered sister-group relationship in the current phylogeny analysis was anticipated. In the current analysis, Hebdomophruda errans Prout, 1917 is isolated from other analyzed Hebdomophruda species (the others are included in Diptychini), highlighting the need for additional research. Krüger (1997, 1998) classified the genus Hebdomophruda into seven species groups on the basis of morphological characters, and H. errans group is one of them (Krüger, 1998). We do not describe a new genus for the taxon errans, nor do we combine it with any genus in the Drepanogynini, highlighting its uncertain taxonomic position (incertae sedis) pending more research. In the current analysis, Sphingomima discolucida Herbulot, 1995 is transferred from unassigned tribus combination to Drepanogynini, but as the type species of Sphingomima (S. heterodoxa Warren, 1899) was not analyzed, we do not transfer the entire genus Sphingomima into Drepanogynini. We highlight the uncertain taxonomic position of the taxon discolucida, acknowledging that it may eventually be included again in Sphingomima if the entire genus should be transferred to Drepanogynini. Diagnosis: Drepanogynini can be diagnosed by the combination of DNA data with up to 11 genetic markers (exemplar Drepanogynis mixtaria (Guenée, 1858)) ArgK (MK738841), COI (MK739615), EF1a (MK739960), IDH (MK740862), MDH (MK741181), Nex9 (MK741630), RpS5 (MK741991) and Wingless (MK742540). In the light of our phylogenetic results, the Drepanogynis group of genera, as classified earlier (Krüger, 2014), is split between two unrelated tribes (Drepanogynini and Diptychini). More research is needed to understand how other Drepanogynis species and the Drepanogynis group of genera sensu Krüger (1997, 1998, 1999, 2014) (at least 11 genera), should be classified. Boarmiini are the sister group to a clade that comprises Macariini, Cassymini, Abraxini and Eutoeini. We found that many species currently classified as Boarmiini are scattered throughout Ennominae. Boarmiini s.str. are strongly supported but are technically not monophyletic because of a large number of genera which need to be formally transferred fromothertribestoBoarmiini (G. Brehmetal., 2019, unpublisheddataforNeotropicaltaxa and L. Murillo-Ramos et al., 2019, unpublished data for other taxa). The results are principally in concordance with Jiang et al. (2017), who supported the monophyly of Boarmiini but with a smaller number of taxa. The divided valva in male genitalia was suggested as a synapomorphy of Macariini + Cassymini + Eutoeini by Holloway (1994). In addition, he proposed the inclusion of Abraxini in Cassymini. Although our findings support a close relationship, this group requires more study and a more extensive sampling effort. Similar findings were provided by Jiang et al. (2017) who suggested more extensive sampling to study the evolutionary relationships of these tribes., Published as part of Murillo-Ramos, Leidys, Brehm, Gunnar, Sihvonen, Pasi, Hausmann, Axel, Holm, Sille, Ghanavi, Hamid Reza, Õunap, Erki, Truuverk, Andro, Staude, Hermann, Friedrich, Egbert, Tammaru, Toomas & Wahlberg, Niklas, 2019, A comprehensive molecular phylogeny of Geometridae (Lepidoptera) with a focus on enigmatic small subfamilies, pp. 1-39 in PeerJ 7 on pages 29-31, DOI: 10.7717/peerj.7386, http://zenodo.org/record/5767530, {"references":["Kruger M. 1997. Revision of Afrotropical Ennominae of the Drepanogynis group I: the genus Hebdomophruda Warren, Part 1. Annals of the Transvaal Museum 36: 257 - 291.","Kruger M. 2014. A revision of the Mauna Walker, 1865 and Illa Warren, 1914 group of genera (Lepidoptera: Geometridae: Ennominae: Nacophorini). Annals of the Ditsong National Museum of Natural History 4: 77 - 173.","Sihvonen P, Staude HS, Mutanen M. 2015. Systematic position of the enigmatic African cycad moths: an integrative approach to a nearly century old problem (Lepidoptera: Geometridae, Diptychini). Systematic Entomology 40 (3): 606 - 627 DOI 10.1111 / syen. 12125.","Kruger M. 1999. Revision of Afrotropical Ennominae of the Drepanogynis group III: the genera Argyrophora Guenee, Pseudomaenas Prout and Microligia Warren. Annals of the Transvaal Museum 36: 427 - 496.","Kruger M. 2002. Revision of Afrotropical Ennominae of the Drepanogynis group IV: the genus Drepanogynis Guenee (Lepidoptera: Geometridae). Transvaal Museum Monograph 13: 1 - 220 incl. 442 figs.","Guenee A. 1858. Histoire naturelle des insectes (Lepidoptera), Species General des Lepidopteres. Tom IX. X. Uranides et Phalenites I. II. Paris: Roret, 304.","Kruger M. 1998. Revision of Afrotropical Ennominae of the Drepanogynis group II: the genus Hebdomophruda Warren, Part 2. Annals of the Transvaal Museum 36: 333 - 349.","Vari L, Kroon DM, Kruger M. 2002. Classification and checklist of the species of Lepidoptera recorded in Southern Africa. Chatswood: Simple Solutions.","Scoble MJ. 1999. Geometrid Moths of theWorld: a catalogue (Lepidoptera, Geometridae) 1, 2. Collingwood: CSIRO.","Jiang N, Li X, Hausmann A, Cheng R, Xue DY, Han HX. 2017. A molecular phylogeny of the Palaearctic and Oriental members of the tribe Boarmiini (Lepidoptera: Geometridae: Ennominae). Invertebrate Systematics 31 (4): 427 - 441 DOI 10.1071 / IS 17005.","Holloway J. 1994. The moths of Borneo, part 11: family Geometridae, subfamily Ennominae. Malayan Nature Journal 47: 1 - 309."]}
- Published
- 2019
- Full Text
- View/download PDF
7. Epidesmiinae Murillo-Ramos, Brehm & Sihvonen 2019, newsubfamily
- Author
-
Murillo-Ramos, Leidys, Brehm, Gunnar, Sihvonen, Pasi, Hausmann, Axel, Holm, Sille, Ghanavi, Hamid Reza, Õunap, Erki, Truuverk, Andro, Staude, Hermann, Friedrich, Egbert, Tammaru, Toomas, and Wahlberg, Niklas
- Subjects
Lepidoptera ,Insecta ,Arthropoda ,Geometridae ,Animalia ,Biodiversity ,Taxonomy - Abstract
Epidesmiinae Murillo-Ramos, Brehm & Sihvonen newsubfamily LSIDurn:lsid:zoobank.org:act:34D1E8F7-99F1-4914-8E12-0110459C2040 Type genus: Epidesmia Duncan & Westwood, 1841. Material examined: Taxa included in the molecular phylogeny: Ecphyas holopsara Turner, 1929, Systatica xanthastis Lower, 1894, Adeixis griseata Hudson, 1903, Dichromodes indicataria Walker, 1866, Phrixocomes sp. Turner, 1930, Abraxaphantes perampla Swinhoe, 1890, Epidesmia chilonaria (Herrich-Schäffer, 1855), Phrataria replicataria Walker, 1866. Most of the slender-bodied Oenochrominae, excluded from Oenochrominae s.str. by Holloway (1996), were recovered as an independent lineage (Fig. 4) that consists of two clades: Ec. holopsara + S. xanthastis and Ep. chilonaria + five other genera. Branch support values from IQ-TREE strongly support the monophyly of this clade (SH-like and UFBoot2 = 100), while in RAxML the clade is moderately supported (RBS = 89). These genera have earlier been assigned to Oenochrominae s.l. (Scoble & Edwards, 1990). However, we recovered the group as a well-supported lineage independent from Oenochrominae s.str. and transfer them to Epidesmiinae, subfam. n. (Table 2). Phylogenetic position: Epidesmiinae is sister to Oenochrominae s.str. + Eumelea + Geometrinae + Ennominae. Short description of Epidesmiinae: Antennae in males unipectinate (exception: Adeixis), shorter towards the apex. Pectination moderate or long. Thorax and abdomen slender (unlike in Oenochrominae). Forewings with sinuous postmedial line and areole present. Forewings planiform (with wings lying flat on the substrate) in resting position, held like a triangle and cover the hindwings. Diagnosis of Epidesmiinae: The genera included in this subfamily form a strongly supported clade with DNA sequence data from the following gene regions (exemplar Epidesmia chilonaria (Herrich-Schäffer, 1855)) ArgK (MK738299), Ca-ATPase (MK738690), CAD (MK738960), COI (MK739187), EF1a (MK740168), GAPDH (MK740402), MDH (MK740974) and Nex9 (MK741433). Athorough morphological investigation of the subfamily, including diagnostic characters, is under preparation. Distribution: Most genera are distributed in the Australian region, with some species ranging into the Oriental region. Abraxaphantes occurs exclusively in the Oriental region., Published as part of Murillo-Ramos, Leidys, Brehm, Gunnar, Sihvonen, Pasi, Hausmann, Axel, Holm, Sille, Ghanavi, Hamid Reza, Õunap, Erki, Truuverk, Andro, Staude, Hermann, Friedrich, Egbert, Tammaru, Toomas & Wahlberg, Niklas, 2019, A comprehensive molecular phylogeny of Geometridae (Lepidoptera) with a focus on enigmatic small subfamilies, pp. 1-39 in PeerJ 7 on page 22, DOI: 10.7717/peerj.7386, http://zenodo.org/record/5767530, {"references":["Holloway J. 1996. The moths of Borneo, part 9: Geometridae (incl. Orthostixini), Oenochrominae, Desmobathrinae, Geometrinae. Ennominae Malayan Nature Journal 49: 147 - 326.","Scoble MJ, Edwards ED. 1990. Parepisparis Bethune-Baker and the composition of the Oenochrominae (Lepidoptera: Geometridae). Entomologica Scandinavica 20 (4): 371 - 399 DOI 10.1163 / 187631289 X 00375."]}
- Published
- 2019
- Full Text
- View/download PDF
8. Ennominae Duponchel 1845
- Author
-
Murillo-Ramos, Leidys, Brehm, Gunnar, Sihvonen, Pasi, Hausmann, Axel, Holm, Sille, Ghanavi, Hamid Reza, Õunap, Erki, Truuverk, Andro, Staude, Hermann, Friedrich, Egbert, Tammaru, Toomas, and Wahlberg, Niklas
- Subjects
Lepidoptera ,Insecta ,Arthropoda ,Geometridae ,Animalia ,Biodiversity ,Ennominae ,Taxonomy - Abstract
Ennominae Duponchel, 1845 Ennominae are the most species-rich subfamily of geometrids. The loss of vein M2 on the hindwing is probably the best apomorphy (Holloway, 1994), although vein M2 is present as tubular in a few ennomine taxa (Staude, 2001; Skou & Sihvonen, 2015). Ennominae are a morphologically highly diverse subfamily, and attempts to find further synapomorphies shared by all major tribal groups have failed. The number of tribes as well as phylogenetic relationships among tribes are still debated (see Skou & Sihvonen, 2015 for an overview). Moreover, the taxonomic knowledge of this subfamily in tropical regions is still poor. Holloway (1994) recognized 21 tribes, Beljaev (2006) 24 tribes, and Forum Herbulot (2007) 27 tribes. To date, four molecular studies have corroborated the monophyly of Ennominae (Yamamoto & Sota, 2007; Wahlberg et al., 2010; Õunap et al., 2011, Sihvonen et al., 2011), with Young (2006) being the only exception who found Ennominae paraphyletic. Moreover, four large-scale taxonomic revisions (without a phylogenetic hypothesis) were published by Pitkin (2002) for the Neotropical region, Skou & Sihvonen (2015), Müller et al. (2019) for the Western Palaearctic region, and Holloway (1994) for Borneo. More detailed descriptions of taxonomic changes in Ennominae will be given by G. Brehm et al. (2019, unpublished data) and L. MurilloRamos et al. (2019, unpublished data). We here discuss general patterns and give details for taxonomic acts not covered in the other two papers. Our findings recover Ennominae as a monophyletic entity, but results were not highly supported in RAxML (RBS = 67) compared to IQ-TREE (SH-Like =100, UFBoot2 = 99). The lineage comprising Geometrinae and Oenochrominae is recovered as the sister clade of Ennominae. In previous studies, Wahlberg et al. (2010) sampled 49 species of Ennominae, Õunap et al. (2011) sampled 33 species, and Sihvonen et al. (2011) 70 species including up to eight markers per species. All these studies supported the division of Ennominae into “boarmiine” and “ennomine” moths (Holloway, 1994). This grouping was proposed by Forbes (1948) and Holloway (1994), who suggested close relationships between the tribes Boarmiini, Macariini, Cassymini and Eutoeini based on the bifid pupal cremaster and the possession of a fovea in the male forewing. The remaining tribes were defined as “ennomines” based on the loss of a setal comb on male sternum A3 and the presence of a strong furca in male genitalia. Both Wahlberg et al. (2010) and Sihvonen et al. (2011) found these two informal groupings to be reciprocally monophyletic. In our analyses, 653 species with up to 11 markers were sampled, with an emphasis on Neotropical taxa, which so far had been poorly represented in the molecular phylogenetic analyses. Our results recovered the division into two major subclades (Fig. 6), a core set of ennomines in a well-supported clade, and a poorly supported larger clade that includes the “boarmiines” among four other lineages usually thought of as "ennomines". The traditional “ennomines” are thus not found to be monophyletic in our analyses, questioning the utility of such an informal name. Our phylogenetic hypothesis supports the validation of numerous tribes proposed previously, in addition to several unnamed clades. We validate 23 tribes (Forum Herbulot, 2007; Skou & Sihvonen, 2015): Gonodontini, Gnophini, Odontoperini, Nacophorini, Ennomini, Campaeini, Alsophilini, Wilemaniini, Prosopolophini, Diptychini, Theriini, Plutodini, Palyadini, Hypochrosini, Apeirini, Epionini, Caberini, Macariini, Cassymini, Abraxini, Eutoeini and Boarmiini. We hereby propose one new tribe: Drepanogynini trib. nov. (Table 2). Except for the new tribe, most of the groups recovered in this study are in concordance with previous morphological classifications (Holloway, 1994; Beljaev, 2006, 2016; Forum Herbulot, 2007; Skou & Sihvonen, 2015; Müller et al., 2019). Five known tribes and two further unnamed lineages (E1, E2 in Fig. 6) form the core Ennominae: Gonodontini, Gnophini, Odontoperini, Nacophorini and Ennomini. Several Neotropical clades that conflict with the current tribal classification of Ennominae will be described as new tribes by G. Brehm et al. (2019, unpublished data). Gonodontini and Gnophini are recovered as sister taxa. Gonodontini was defined by Forbes (1948) and studied by Holloway (1994), who showed synapomorphies shared by Gonodontis Hübner, (1823), Xylinophylla Warren, 1898 and Xenimpia Warren, 1895. Our results recovered the genus Xylinophylla as sister of Xenimpia and Psilocladia Warren, 1898. Psilocladia is an African genus currently unassigned to tribe (see Sihvonen, Staude & Mutanen, 2015 for details). Considering the strong support and that the facies and morphology are somewhat similar to other analyzed taxa in Gonodontini, we formally include Psilocladia in Gonodontini (Table 2). Gnophini are monophyletic and we formally transfer the African genera Oedicentra Warren, 1902 and Hypotephrina Janse, 1932, from unassigned to Gnophini (Table 2). The total number of species, and number of included genera in Gnophini are still uncertain (Skou & Sihvonen, 2015; Müller et al., 2019). Based on morphological examination, Beljaev (2016) treated Angeronini as a synonym of Gnophini. The costal projection on male valva bearing a spine or group of spines was considered as a synapomorphy of the group. Using molecular data, Yamamoto & Sota (2007) showed a close phylogenetic relationship between Angerona Duponchel, 1829 (Angeronini) and Chariaspilates Wehrli, 1953 (Gnophini). Similar results were shown by Sihvonen et al. (2011) who recovered Angerona and Charissa Curtis, 1826 as sister taxa, and our results also strongly support treating Angeronini as synonym of Gnophini. Holloway (1994) suggested close affinities among Nacophorini, Azelinini and Odontoperini on the basis of larval characters. In a morphology-based phylogenetic study, Skou & Sihvonen (2015) suggested multiple setae on the proleg on A6 of the larvae as a synapomorphy of the group. Our results also support a close relationship of Nacophorini, Azelinini and Odontoperini. These clades will be treated in more detail by G. Brehmetal. (2019, unpublisheddata). Following the ideas of Pitkin (2002), Beljaev (2008) synonymized the tribes Ourapterygini and Nephodiini with Ennomini. He considered the divided vinculum in male genitalia and the attachment of muscles m 3 as apomorphies of the Ennomini, but did not provide a phylogenetic analysis. Sihvonen et al. (2011) supported Beljaev’ s assumptions and recovered Ennomos Treitschke, 1825 (Ennomini), Ourapteryx Leach, 1814 (Ourapterygini) and Nephodia Hübner, 1823 (Nephodiini) as belonging to the same clade. Our comprehensive analysis confirms those previous findings and we agree with Ennomini as the valid tribal name for this large clade. This clade will be treated in more detail by G. Brehm et al. (2019, unpublisheddata). Campaeini, Alsophilini, Wilemaniini and Prosopolophini grouped together in a well-supported clade (SH-like = 100, UFBoot2 = 99). Previous molecular analyses have shown an association of Colotoini [= Prosopolophini] and Wilemaniini (Yamamoto & Sota, 2007; Sihvonen et al., 2011), although no synapomorphies are known to support synonymization (Skou & Sihvonen, 2015). The Palaearctic genera Compsoptera Blanchard, 1845, Apochima Agassiz, 1847, Dasycorsa Prout, 1915, Chondrosoma Anker, 1854 and Dorsispina Nupponen & Sihvonen, 2013, are potentially part of the same complex (Skou & Sihvonen, 2015, Sihvonen pers. obs.), but they were not included in the current study. Campaeini is a small group including four genera with Oriental, Palaearctic and Nearctic distribution, apparently closely related to Alsophilini and Prosopolophini, but currently accepted as a tribe (Forum Herbulot, 2007; Skou & Sihvonen, 2015). Our results support the close phylogenetic affinities among these tribes, but due to the limited number of sampled taxa, we do not propose any formal changes. The genus Declana Walker, 1858 is recovered as an isolated clade sister to Diptychini. This genus is endemic to New Zealand, but to date has not been assigned to tribe. According to our results, Declana could well be defined as its own tribe. However, the delimitation of this tribe is beyond the scope of our paper and more genera from Australia and New Zealand should first be examined. Aclose relationship between Nacophorini and Lithinini was suggested by Pitkin (2002), based on the similar pair of processes of the anellus in the male genitalia. Pitkin also noted a morphological similarity in the male genitalia (processes of the juxta) shared by Nacophorini and Diptychini. In a study of the Australasian fauna, Young (2008) suggested the synonymization of Nacophorini and Lithinini. This was further corroborated by Sihvonen, Staude & Mutanen (2015) who found that Diptychini were nested within some Nacophorini and Lithinini. However, none of the studies proposed formal taxonomic changes because of limited taxon sampling. In contrast, samples in our analyses cover all biogeographic regions and the results suggest that true Nacophorini is a clade which comprises almost exclusively New World species. This clade is clearly separate from Old World “nacophorines” (cf. Young, 2003) that are intermixed with Lithinini and Diptychini. We here formally transfer Old World nacophorines to Diptychini and synonymize Lithinini syn. nov. with Diptychini (Table 2). Further formal taxonomic changes in the Nacophorini complex are provided by G. Brehm et al. (2019, unpublished data). Theria Hübner 1825, the only representative of Theriini in this study, clustered together with Lomographa Hübner, 1825 (Baptini in Skou & Sihvonen, 2015), in a well-supported clade, agreeing with the molecular results of Sihvonen et al. (2011). The placement of Lomographa in Caberini (Rindge, 1979; Pitkin, 2002) is not supported by our study nor by that of Sihvonen et al. (2011). The monophyly of Lomographa has not been tested before, but we show that one Neotropical and one Palaearctic Lomographa species indeed group together. Our results show that Caberini are not closely related to the Theriini + Baptini clade, unlike in earlier morphology-based hypotheses (Rindge, 1979; Pitkin, 2002). Morphologically, Theriini and Baptini are dissimilar, therefore we recognize them as valid tribes (see description and illustrations in Skou & Sihvonen, 2015). According to our results, 11 molecular markers were not enough to infer phylogenetic affinities of Plutodini (represented by one species of Plutodes). Similar results were found by Sihvonen et al. (2011), who in some analyses recovered Plutodes as sister of Eumelea. Our analyses are congruent with those findings. IQ-TREE results suggest that Plutodes is sister to Palyadini, but RAxML analyses recovered Eumelea as the most probable sister of Plutodes. Given that our analyses are not in agreement on the sister-group affinities of Plutodes, we do not make any assumptions about its phylogenetic position. Instead, we emphasize that further work needs to be done to clarify the phylogenetic positions of Plutodes and related groups. Hypochrosini is only recovered in a well-defined lineage if the genera Apeira Gistl, 1848 (Apeirini), Epione Duponchel, 1829 (Epionini), Sericosema (Caberini), Ithysia (Theriini), Capasa Walker, 1866 (unassigned) and Omizodes Warren, 1894 (unassigned) were transferred to Hypochrosini. Skou & Sihvonen (2015) already suggested aclose association of Epionini, Apeirini and Hypochrosini. We think that synonymizing these tribes is desirable. However, due to the limited number of sampled taxa we do not propose any formal changes until more data becomes available. We do suggest, however, formal taxonomic changes for the genera Capasa and Omizodes from unassigned to Hypochrosini (Table 2). The southern African genus Drepanogynis is paraphyletic and has earlier been classified as belonging in Ennomini, and later in Nacophorini (Krüger, 2002). In our phylogeny, it is intermixed with the genera Sphingomima Warren, 1899, and Thenopa Walker, 1855. Hebdomophruda errans Prout, 1917 also clusters together with these taxa, apart from other Hebdomophruda Warren, 1897 species, which suggests that this genus is polyphyletic. These genera form a clade sister to the lineage that comprises several Hypochrosini species. Considering that our analysis strongly supports this clade, we place Thenopa, Sphingomima and Drepanogynis in a tribe of their own., Published as part of Murillo-Ramos, Leidys, Brehm, Gunnar, Sihvonen, Pasi, Hausmann, Axel, Holm, Sille, Ghanavi, Hamid Reza, Õunap, Erki, Truuverk, Andro, Staude, Hermann, Friedrich, Egbert, Tammaru, Toomas & Wahlberg, Niklas, 2019, A comprehensive molecular phylogeny of Geometridae (Lepidoptera) with a focus on enigmatic small subfamilies, pp. 1-39 in PeerJ 7 on pages 25-29, DOI: 10.7717/peerj.7386, http://zenodo.org/record/5767530, {"references":["Holloway J. 1994. The moths of Borneo, part 11: family Geometridae, subfamily Ennominae. Malayan Nature Journal 47: 1 - 309.","Staude HS. 2001. A revision of the genus Callioratis Felder (Lepidoptera: Geometridae: Diptychinae). Metamorphosis 12: 125 - 156.","Skou P, Sihvonen P. 2015. The Geometrid moths of Europe. Vol. 5: Ennominae I. Stenstrup: Apollo Books.","Beljaev EA. 2006. A morphological approach to the Ennominae phylogeny (Lepidoptera, Geometridae). Spixiana 29: 215 - 216.","Forum Herbulot. 2007. World list of family-group names in Geometridae. Available at http: // www. herbulot. de / famgroup. htm (accessed 3 August 2018).","Yamamoto S, Sota T. 2007. Phylogeny of the Geometridae and the evolution of winter moths inferred from a simultaneous analysis of mitochondrial and nuclear genes. Molecular Phylogenetics and Evolution 44 (2): 711 - 723 DOI 10.1016 / j. ympev. 2006.12.027.","Wahlberg N, Snall N, Viidalepp J, Ruohomaki K, Tammaru T. 2010. The evolution of female flightlessness among Ennominae of the Holarctic forest zone (Lepidoptera, Geometridae). Molecular Phylogenetics and Evolution 55 (3): 929 - 938 DOI 10.1016 / j. ympev. 2010.01.025.","Ounap E, Javois J, Viidalepp J, Tammaru T. 2011. Phylogenetic relationships of selected European Ennominae (Lepidoptera: Geometridae). European Journal of Entomology 108 (2): 267 - 273 DOI 10.14411 / eje. 2011.036.","Sihvonen P, Mutanen M, Kaila L, Brehm G, Hausmann A, Staude HS. 2011. Comprehensive molecular sampling yields a robust phylogeny for geometrid moths (Lepidoptera: Geometridae). PLOS ONE 6 (6): e 20356 DOI 10.1371 / journal. pone. 0020356.","Young CJ. 2006. Molecular relationships of the Australian Ennominae (Lepidoptera: Geometridae) and implications for the phylogeny of the Geometridae from molecular and morphological data. Zootaxa 1264 (1): 1 - 147 DOI 10.11646 / zootaxa. 1264.1.1.","Pitkin L. 2002. Neotropical Ennomine moths: a review of the genera (Lepidoptera: Geometridae). Zoological Journal of the Linnean Society 135 (2 - 3): 121 - 401 DOI 10.1046 / j. 1096 - 3642.2002.01200. x.","Muller B, Erlacher S, Hausmann A, Rajaei H, Sihvonen P, Skou P. 2019. Ennominae II. In: Hausmann A, Sihvonen P, Rajaei H, Skou P, eds. Geometrid Moths of Europe. Vol. 6. Leiden: Brill, 906.","Forbes WTM. 1948. Lepidoptera of New York and neighboring states. II. Memoirs of the Cornell University Agricultural Experiment Station 274: 1 - 263.","Beljaev E. 2016. Annotated catalogue of the insects of Russian Far East. Volume II. Lepidoptera. Vladivostok: Dalnauka, 812.","Sihvonen P, Staude HS, Mutanen M. 2015. Systematic position of the enigmatic African cycad moths: an integrative approach to a nearly century old problem (Lepidoptera: Geometridae, Diptychini). Systematic Entomology 40 (3): 606 - 627 DOI 10.1111 / syen. 12125.","Beljaev EA. 2008. A new concept of the generic composition of the geometrid moth tribe Ennomini (Lepidoptera, Geometridae) based on functional morphology of the male genitalia. Entomological Review 88 (1): 50 - 60 DOI 10.1134 / S 0013873808010089.","Young CJ. 2008. Characterization of the Australian Nacophorini using adult morphology, and phylogeny of the Geometridae based on morphological characters. Zootaxa 1736 (1): 1 - 141 DOI 10.11646 / zootaxa. 1736.1.1.","Young CJ. 2003. The place of the Australian Nacophorini in the Geometridae. Spixiana 26: 199 - 200.","Rindge FH. 1979. A revision of the North American moths of the genus Lomographa (Lepidoptera, Geometridae). American Museum Novitates 2673: 1 - 18.","Kruger M. 2002. Revision of Afrotropical Ennominae of the Drepanogynis group IV: the genus Drepanogynis Guenee (Lepidoptera: Geometridae). Transvaal Museum Monograph 13: 1 - 220 incl. 442 figs."]}
- Published
- 2019
- Full Text
- View/download PDF
9. Sterrhinae Meyrick 1892
- Author
-
Murillo-Ramos, Leidys, Brehm, Gunnar, Sihvonen, Pasi, Hausmann, Axel, Holm, Sille, Ghanavi, Hamid Reza, Õunap, Erki, Truuverk, Andro, Staude, Hermann, Friedrich, Egbert, Tammaru, Toomas, and Wahlberg, Niklas
- Subjects
Lepidoptera ,Insecta ,Arthropoda ,Geometridae ,Animalia ,Sterrhinae ,Biodiversity ,Taxonomy - Abstract
Sterrhinae Meyrick, 1892 We included 74 Sterrhinae taxa in our analyses, with all tribes recognized in Forum Herbulot (2007) being represented. The recovered patterns generally agree with previous phylogenetic hypotheses of the subfamily (Sihvonen & Kaila, 2004, Sihvonen et al., 2011). The genera Ergavia Walker, 1866, Ametris Guenée, 1858 and Macrotes Westwood, 1841, which currently are placed in Oenochrominae were found to form a well-defined lineage within Sterrhinae with strong support (SH-Like = 99 UFBoot2 = 100). These genera are distributed in the New World, whereas the range of true Oenochrominae is restricted to the Australian and Oriental Regions. Sihvonen et al. (2011) already found that Ergavia and Afrophyla Warren, 1895 belong to Sterrhinae and suggested more extensive analyses to clarify the position of these genera, which we did. Afrophyla was transferred to Sterrhinae by Sihvonen & Staude (2011) and Ergavia, Ametris and Macrotes (plus Almodes Guenée, (1858)) will be transferred by P. Sihvonen et al. (2019, unpublished data). Cosymbiini, Timandrini, Rhodometrini and Lythriini are closely related as shown previously (Sihvonen & Kaila, 2004; Õunap, Viidalepp & Saarma, 2008; Sihvonenetal., 2011). Cosymbiini appear as sister to the Timandrini + Traminda Saalmüller, 1891 + Pseudosterrha Warren, 1888 and Rhodometrini + Lythriini clade. Lythriini are closely related to Rhodometrini as shown by Õunap, Viidalepp & Saarma (2008) with both molecular and morphological data. Traminda (Timandrini) and Pseudosterrha (Cosymbiini) grouped together forming a lineage that is sister to the Rhodometrini + Lythriini clade (Fig. 2). Rhodostrophiini and Cyllopodini were recovered as polyphyletic with species of Cyllopodini clustering within Rhodostrophiini. Similar results were recovered previously (Sihvonen & Kaila, 2004; Sihvonen et al., 2011), suggesting that additional work is needed to be done to clarify the status and systematic positions of these tribes. Sterrhini and Scopulini were recovered as sister taxa as proposed by Sihvonen & Kaila (2004), Hausmann (2004), Õunap, Viidalepp & Saarma (2008) and Sihvonenetal. (2011). Our new phylogenetic hypothesis constitutes a large step towards understanding the evolutionary relationships of the major lineages of Sterrhinae. Further taxonomic changes and more detailed interpretation of the clades will be dealt with by P. Sihvonen et al. (2019, unpublisheddata)., Published as part of Murillo-Ramos, Leidys, Brehm, Gunnar, Sihvonen, Pasi, Hausmann, Axel, Holm, Sille, Ghanavi, Hamid Reza, Õunap, Erki, Truuverk, Andro, Staude, Hermann, Friedrich, Egbert, Tammaru, Toomas & Wahlberg, Niklas, 2019, A comprehensive molecular phylogeny of Geometridae (Lepidoptera) with a focus on enigmatic small subfamilies, pp. 1-39 in PeerJ 7 on page 18, DOI: 10.7717/peerj.7386, http://zenodo.org/record/5767530, {"references":["Forum Herbulot. 2007. World list of family-group names in Geometridae. Available at http: // www. herbulot. de / famgroup. htm (accessed 3 August 2018).","Sihvonen P, Kaila L. 2004. Phylogeny and tribal classification of Sterrhinae with emphasis on delimiting Scopulini (Lepidoptera: Geometridae). Systematic Entomology 29 (3): 324 - 358 DOI 10.1111 / j. 0307 - 6970.2004.00248. x.","Sihvonen P, Mutanen M, Kaila L, Brehm G, Hausmann A, Staude HS. 2011. Comprehensive molecular sampling yields a robust phylogeny for geometrid moths (Lepidoptera: Geometridae). PLOS ONE 6 (6): e 20356 DOI 10.1371 / journal. pone. 0020356.","Guenee A. 1858. Histoire naturelle des insectes (Lepidoptera), Species General des Lepidopteres. Tom IX. X. Uranides et Phalenites I. II. Paris: Roret, 304.","Sihvonen P, Staude H. 2011. Geometrid moth Afrophyla vethi (Snellen, 1886) transferred from Oenochrominae to Sterrhinae (Lepidoptera: Geometridae). Metamorphosis 22: 102 - 113.","Ounap E, Viidalepp J, Saarma U. 2008. Systematic position of Lythriini revised: transferred from Larentiinae to Sterrhinae (Lepidoptera, Geometridae). Zoologica Scripta 37 (4): 405 - 413 DOI 10.1111 / j. 1463 - 6409.2008.00327. x.","Hausmann A. 2004. Geometrid moths of Europe. Vol. 2: Sterrhinae. Stenstrup: Apollo books."]}
- Published
- 2019
- Full Text
- View/download PDF
10. Geometrinae Leach 1815
- Author
-
Murillo-Ramos, Leidys, Brehm, Gunnar, Sihvonen, Pasi, Hausmann, Axel, Holm, Sille, Ghanavi, Hamid Reza, Õunap, Erki, Truuverk, Andro, Staude, Hermann, Friedrich, Egbert, Tammaru, Toomas, and Wahlberg, Niklas
- Subjects
Lepidoptera ,Geometridae ,Animalia ,Biodiversity ,Taxonomy - Abstract
Geometrinae Stephens, 1829 The monophyly of Geometrinae is strongly supported, but the number of tribes included in this subfamily is still unclear. Sihvonen et al. (2011) analyzed 27 species assigned to 11 tribes, followed by Ban et al. (2018) with 116 species in 12 tribes. Ban et al. (2018) synonymized nine tribes, and validated the monophyly of 12 tribes, with two new tribes Ornithospilini and Agathiini being the first two clades branching off the main lineage of Geometrinae. Our study (168 species) validates the monophyly of 13 tribes, eleven of which were defined in previous studies: Hemitheini, Dysphaniini, Pseudoterpnini s.str., Ornithospilini, Agathiini, Aracimini, Neohipparchini, Timandromorphini, Geometrini, Comibaeini, Nemoriini. One synonymization is proposed: Synchlorini Ferguson, 1969 syn. nov. is synonymized with Nemoriini Gumppenberg, 1887. One tribe is proposed as new: Chlorodontoperini trib. nov., and one tribe (Archaeobalbini Viidalepp, 1981, stat. rev.) is raised from synonymy with Pseudoterpnini. Ban et al. (2018) found that Ornithospila Warren, 1894 is sister to the rest of Geometrinae, and Agathia Guenée, 1858 is sister to the rest of Geometrinae minus Ornithospila. Although weakly supported, our results (with more species of Agathia sampled) placed Ornisthospilini+Agathiini together and these tribes are the sister to the rest of Geometrinae. Chlorodontopera is placed as an isolated lineage as shown by Ban et al. (2018). Given that Chlorodontopera clearly forms an independent and well-supported lineage we propose the description of a new tribe Chlorodontoperini., Published as part of Murillo-Ramos, Leidys, Brehm, Gunnar, Sihvonen, Pasi, Hausmann, Axel, Holm, Sille, Ghanavi, Hamid Reza, Õunap, Erki, Truuverk, Andro, Staude, Hermann, Friedrich, Egbert, Tammaru, Toomas & Wahlberg, Niklas, 2019, A comprehensive molecular phylogeny of Geometridae (Lepidoptera) with a focus on enigmatic small subfamilies, pp. 1-39 in PeerJ 7 on pages 22-23, DOI: 10.7717/peerj.7386, http://zenodo.org/record/5767530, {"references":["Sihvonen P, Mutanen M, Kaila L, Brehm G, Hausmann A, Staude HS. 2011. Comprehensive molecular sampling yields a robust phylogeny for geometrid moths (Lepidoptera: Geometridae). PLOS ONE 6 (6): e 20356 DOI 10.1371 / journal. pone. 0020356.","Ban X, Jiang N, Cheng R, Xue D, Han H. 2018. Tribal classification and phylogeny of Geometrinae (Lepidoptera: Geometridae) inferred from seven gene regions. Zoological Journal of the Linnean Society 184 (3): 653 - 672 DOI 10.1093 / zoolinnean / zly 013.","Guenee A. 1858. Histoire naturelle des insectes (Lepidoptera), Species General des Lepidopteres. Tom IX. X. Uranides et Phalenites I. II. Paris: Roret, 304."]}
- Published
- 2019
- Full Text
- View/download PDF
11. Chlorodontoperini , Murillo-Ramos, Sihvonen & Brehm 2019, new tribe
- Author
-
Murillo-Ramos, Leidys, Brehm, Gunnar, Sihvonen, Pasi, Hausmann, Axel, Holm, Sille, Ghanavi, Hamid Reza, Õunap, Erki, Truuverk, Andro, Staude, Hermann, Friedrich, Egbert, Tammaru, Toomas, and Wahlberg, Niklas
- Subjects
Lepidoptera ,Insecta ,Arthropoda ,Geometridae ,Animalia ,Biodiversity ,Taxonomy - Abstract
Chlorodontoperini Murillo-Ramos, Sihvonen & Brehm, new tribe LSIDurn:lsid:zoobank.org:act:0833860E-A092-43D6-B2A1-FB57D9F7988D Type genus: Chlorodontopera Warren, 1893 Material examined: Taxa in the molecular phylogeny: Chlorodontopera discospilata (Moore, 1867) and Chlorodontopera mandarinata (Leech, 1889). Some studies (Inoue, 1961; Holloway, 1996) suggested the morphological similarities of Chlorodontopera Warren, 1893 with members of Aracimini. Moreover, Holloway (1996) considered this genus as part of Aracimini. Our results suggest a sister relationship of Chlorodontopera with a large clade comprising Aracimini, Neohipparchini, Timandromorphini, Geometrini, Nemoriini and Comibaenini. Considering that our analysis strongly supports Chlorodontopera as an independent lineage (branch support SH-like = 99 UFBoot2 = 100, RBS = 99), we introduce the monobasic tribe Chlorodontoperini. This tribe can be diagnosed by the combination of DNA data from six genetic markers (exemplar Chlorodontopera discospilata) CAD (MG015448), COI (MG014735), EF1a (MG015329), GAPDH (MG014862), MDH (MG014980) and RpS5 (MG015562). Ban et al. (2018) did not introduce a new tribe because the relationship between Chlorodontopera and Euxena Warren, 1896 was not clear in their study. This relationship was also been proposed by Holloway (1996) based on similar wing patterns. Further analyses are needed to clarify the affinities between Chlorodontopera and Euxena. The tribe Chlorodontoperini is diagnosed by distinct discal spots with pale margins on the wings, which are larger on the hindwing; a dull reddish-brown patch is present between the discal spot and the costa on the hindwing, and veins M3 and CuA1 are not stalked on the hindwing (Ban et al., 2018). In the male genitalia, the socii are stout and setose and the lateral arms of the gnathos are developed, not joined. Sternite 3 of the male has setal patches (see Holloway, 1996 for illustrations). Formal taxonomic changesare listedin Table 2. Aracimini, Neohipparchini, Timandromorphini, Geometrini and Comibaenini were recovered as monophyletic groups. These results are in full agreement with Ban et al. (2018). However, the phylogenetic position of Eucyclodes Warren, 1894 is uncertain (unnamed G2). The monophyly of Nemoriini and Synchlorini is not supported. Instead, Synchlorini are nested within Nemoriini (support branch SH-like = 98.3, UFBoot2 = 91, RBS = 93). Our findings are in concordance with Sihvonen et al. (2011) and Ban et al. (2018), but our analyses included a larger number of markers and a much higher number of taxa. Thus, we formally synonymize Synchlorini syn. nov. with Nemoriini (Table 2). The monophyly of Pseudoterpnini sensu Pitkin, Han & James (2007) could not be recovered. Similar results were shown by Ban et al. (2018) who recovered Pseudoterpnini s.l. including all the genera previously studied by Pitkin, Han & James (2007), forming a separate clade from Pseudoterpna Hübner, 1823 + Pingasa Moore, 1887. Our results showed African Mictoschema Prout, 1922 falling within Pseudoterpnini s.str., and it is sister to Pseudoterpna and Pingasa. Asecond group of Pseudoterpnini s.l. was recovered as an independent lineage clearly separate from Pseudoterpnini s.str. (SH-like = 88.3, UFBoot2 = 64). Ban et al. (2018) did not introduce a new tribe due to the morphological similarities and difficulty in finding apomorphies of Pseudoterpnini s.str. In addition, their results were weakly supported. Considering that two independent studies have demonstrated the paraphyly of Pseudoterpnini sensu Pitkin et al. (2007), we see no reason for retaining the wide concept of this tribe. Instead, we propose the revival of the tribe status of Archaeobalbini., Published as part of Murillo-Ramos, Leidys, Brehm, Gunnar, Sihvonen, Pasi, Hausmann, Axel, Holm, Sille, Ghanavi, Hamid Reza, Õunap, Erki, Truuverk, Andro, Staude, Hermann, Friedrich, Egbert, Tammaru, Toomas & Wahlberg, Niklas, 2019, A comprehensive molecular phylogeny of Geometridae (Lepidoptera) with a focus on enigmatic small subfamilies, pp. 1-39 in PeerJ 7 on pages 23-24, DOI: 10.7717/peerj.7386, http://zenodo.org/record/5767530, {"references":["Inoue H. 1961. Lepidoptera: Geometridae. Insecta Japonica 4: 1 - 106.","Holloway J. 1996. The moths of Borneo, part 9: Geometridae (incl. Orthostixini), Oenochrominae, Desmobathrinae, Geometrinae. Ennominae Malayan Nature Journal 49: 147 - 326.","Ban X, Jiang N, Cheng R, Xue D, Han H. 2018. Tribal classification and phylogeny of Geometrinae (Lepidoptera: Geometridae) inferred from seven gene regions. Zoological Journal of the Linnean Society 184 (3): 653 - 672 DOI 10.1093 / zoolinnean / zly 013.","Sihvonen P, Mutanen M, Kaila L, Brehm G, Hausmann A, Staude HS. 2011. Comprehensive molecular sampling yields a robust phylogeny for geometrid moths (Lepidoptera: Geometridae). PLOS ONE 6 (6): e 20356 DOI 10.1371 / journal. pone. 0020356.","Pitkin LM, Han HX, James S. 2007. Moths of the tribe Pseudoterpnini (Geometridae: Geometrinae): a review of the genera. Zoological Journal of the Linnean Society 150 (2): 343 - 412 DOI 10.1111 / j. 1096 - 3642.2007.00287. x."]}
- Published
- 2019
- Full Text
- View/download PDF
12. Geometridae Leach 1815
- Author
-
Murillo-Ramos, Leidys, Brehm, Gunnar, Sihvonen, Pasi, Hausmann, Axel, Holm, Sille, Ghanavi, Hamid Reza, Õunap, Erki, Truuverk, Andro, Staude, Hermann, Friedrich, Egbert, Tammaru, Toomas, and Wahlberg, Niklas
- Subjects
Lepidoptera ,Insecta ,Arthropoda ,Geometridae ,Animalia ,Biodiversity ,Taxonomy - Abstract
Geometridae Leach, 1815 The phylogenetic hypothesis presented in this study is by far the most comprehensive to date in terms of the number of markers, sampled taxa and geographical coverage. In total, our sample includes 814 genera, thus representing 41% of the currently recognized Geometridae genera (Scoble & Hausmann, 2007). Previous phylogenetic hypotheses were based mainly on the European fauna and many clades were ambiguously supported due to low taxon sampling. The general patterns of the phylogenetic relationships among the subfamilies recovered in our study largely agrees with previous hypotheses based on morphological characters and different sets of molecular markers (Holloway, 1997; Abraham et al., 2001; Yamamoto & Sota, 2007; Sihvonen et al., 2011). However, the results of our larger dataset differ in many details and shed light on the phylogenetic relationships of several, poorly resolved, small subfamilies. Sterrhinae are recovered as the sister subfamily to the remaining Geometridae. This result is not in concordance with Sihvonen et al. (2011), Yamamoto & Sota (2007) and Regier et al. (2009), who found a sister group relationship between Sterrhinae and Larentiinae which in turn were sister to the rest of Geometridae. Sihvonen et al. (2011) showed the Sterrhinae + Larentiinae sister relationship with low support, while Yamamoto & Sota (2007) and Regier et al. (2009) included only a few samples in their analyses. Our analyses include representatives from almost all known tribes currently included in Sterrhinae and Larentiinae. The higher number of markers, improved methods of analysis, the broader taxon sampling as well as the stability of our results suggests that Sterrhinae are indeed the sister group to the remaining Geometridae. Sterrhinae (after transfer of Ergavia, Ametris and Macrotes, see details below), Larentiinae, Archiearinae, Geometrinae and Ennominae were highly supported as monophyletic. Oenochrominae and Desmobathrinae formed polyphyletic and paraphyletic assemblages, respectively. Table 2 Summary of formally proposed taxonomic changes. Transfer from Archiearinae to Ennominae Acalyphes Turner, 1926, to Ennominae: Diptychini Dirce Prout, 1910, to Ennominae: Diptychini Transfer from Oenochrominae to Desmobathrinae (Desmobathrini): Nearcha Guest, 1887 Racasta Walker, 1861 Zanclopteryx Herrich-Schäffer, 1855 Transfer from Oenochrominae to Epidesmiinae: Abraxaphantes Warren, 1894 Adeixis Warren 1987 Dichromodes Guenée 1858 Ecphyas Turner, 1929 Epidesmia Duncan & Westwood, 1841 Phrixocomes Turner, 1930 Phrataria Walker, 1863 Systatica Turner, 1904 New tribe combinations in Ennominae Psilocladia Warren, 1898, from unassigned to Gonodontini Oedicentra Warren, 1902, from Boarmiini to Gnophini Hypotephrina Janse, 1932, from unassigned to Gnophini Capusa Walker, 1857, from Nacophorini to Diptychini Mictodoca Meyrick, 1892, from Nacophorini to Diptychini Furcatrox McQuillan, 1996, from Nacophorini to Diptychini Amelora Guest, 1897, from Nacophorini to Diptychini Archephanes Turner, 1926, from Nacophorini to Diptychini Thalaina Walker, 1855, from Nacophorini to Diptychini Niceteria Turner, 1929, from Nacophorini to Diptychini Neazata Warren, 1906 from Caberini to Diptychini Idiodes Guenée, 1858 from unassigned to Diptychini Panhyperochia Krüger, 2013, from Nacophorini to Diptychini Mauna Walker, 1865, from Nacophorini to Diptychini Pareclipsis Warren, 1894, from unassigned to Diptychini Crambometra Prout, 1915, from unassigned to Diptychini Hebdomophruda Warren, 1897, from Nacophorini to Diptychini Pareclipsis Warren, 1894, from unassigned to Diptychini Capasa Walker 1866, from unassigned to Hypochrosini Omizodes Warren, 1894, from unassigned to Hypochrosini Metallospora Warren, 1905, from unassigned to Cassymini Obolcola Walker, 1862, from unassigned to Abraxini Chelotephrina Fletcher, 1958 from unassigned to Abraxini Cassephyra Holloway, 1994 from Cassymini to Abraxini Thenopa Walker, 1855 from unassigned to Drepanogynini Drepanogynis Guenée, 1858 from Nacophorini to Drepanogynini The monophylies of Oenochrominae and Desmobathrinae have long been questioned. Morphological studies addressing Oenochrominae or Desmobathrinae have been limited and the majority of genera have never been examined in depth. In addition, it has been very difficult to establish the boundaries of these subfamilies on the basis of morphological structures (Scoble & Edwards, 1990). Sihvonen et al. (2011) showed that neither Oenochrominae nor Desmobathrinae were monophyletic, but these results were considered preliminary due to the limited number of sampled taxa, and as a consequence no formal transfers of taxa were proposed. The systematic status of Orthostixinae remains uncertain because it was not included in our study. Sihvonen et al. (2011) included the genus Naxa Walker, 1856, formally placed in Orthostixinae, and found it to be nested within Ennominae. However, only three genes were successfully sequenced from this taxon, and its position in the phylogenetic tree turned out to be highly unstable in our analyses. It was thus excluded from our dataset. Orthostixis Hübner, 1823, the type genus of the subfamily, needs to be included in future analyses., Published as part of Murillo-Ramos, Leidys, Brehm, Gunnar, Sihvonen, Pasi, Hausmann, Axel, Holm, Sille, Ghanavi, Hamid Reza, Õunap, Erki, Truuverk, Andro, Staude, Hermann, Friedrich, Egbert, Tammaru, Toomas & Wahlberg, Niklas, 2019, A comprehensive molecular phylogeny of Geometridae (Lepidoptera) with a focus on enigmatic small subfamilies, pp. 1-39 in PeerJ 7 on pages 15-18, DOI: 10.7717/peerj.7386, http://zenodo.org/record/5767530, {"references":["Scoble MJ, Hausmann A. 2007. Online list of valid and available names of the Geometridae of the world. Available at http: // www. lepbarcoding. org / geometridae / species _ checklists. php.","Holloway J. 1997. The moths of Borneo, part 10: family Geometridae, subfamilies Sterrhinae and Larentiinae. Malayan Nature Journal 51: 1 - 242.","Abraham D, Ryrholm N, Wittzell H, Jeremy DH, Scoble MJ, Lofstedt C. 2001. Molecular phylogeny of the subfamilies in Geometridae (Geometroidea: Lepidoptera). Molecular Phylogenetics and Evolution 20 (1): 65 - 77 DOI 10.1006 / mpev. 2001.0949.","Yamamoto S, Sota T. 2007. Phylogeny of the Geometridae and the evolution of winter moths inferred from a simultaneous analysis of mitochondrial and nuclear genes. Molecular Phylogenetics and Evolution 44 (2): 711 - 723 DOI 10.1016 / j. ympev. 2006.12.027.","Sihvonen P, Mutanen M, Kaila L, Brehm G, Hausmann A, Staude HS. 2011. Comprehensive molecular sampling yields a robust phylogeny for geometrid moths (Lepidoptera: Geometridae). PLOS ONE 6 (6): e 20356 DOI 10.1371 / journal. pone. 0020356.","Regier JC, Zwick A, Cummings MP, Kawahara AY, Cho S, Weller S, Roe A, Baixeras J, Brown JW, Parr C, Davis DR, Epstein M, Hallwachs W, Hausmann A, Janzen DH, Kitching IJ, Solis MA, Yen SH, Bazinet AL, Mitter C. 2009. Toward reconstructing the evolution of advanced moths and butterflies (Lepidoptera: Ditrysia): an initial molecular study. BMC Evolutionary Biology 9 (1): 280 DOI 10.1186 / 1471 - 2148 - 9 - 280.","Guenee A. 1858. Histoire naturelle des insectes (Lepidoptera), Species General des Lepidopteres. Tom IX. X. Uranides et Phalenites I. II. Paris: Roret, 304.","McQuillan PB, Edwards ED. 1996. Geometroidea. In: Nielsen ES, Edwards TE, Rangsi TV, eds. Checklist of the Lepidoptera of Australia. Clayton: CSIRO Publishing.","Holloway J. 1994. The moths of Borneo, part 11: family Geometridae, subfamily Ennominae. Malayan Nature Journal 47: 1 - 309.","Holloway J. 1996. The moths of Borneo, part 9: Geometridae (incl. Orthostixini), Oenochrominae, Desmobathrinae, Geometrinae. Ennominae Malayan Nature Journal 49: 147 - 326.","Forbes WTM. 1948. Lepidoptera of New York and neighboring states. II. Memoirs of the Cornell University Agricultural Experiment Station 274: 1 - 263.","Scoble MJ, Edwards ED. 1990. Parepisparis Bethune-Baker and the composition of the Oenochrominae (Lepidoptera: Geometridae). Entomologica Scandinavica 20 (4): 371 - 399 DOI 10.1163 / 187631289 X 00375."]}
- Published
- 2019
- Full Text
- View/download PDF
13. Larentiinae Duponchel 1845
- Author
-
Murillo-Ramos, Leidys, Brehm, Gunnar, Sihvonen, Pasi, Hausmann, Axel, Holm, Sille, Ghanavi, Hamid Reza, Õunap, Erki, Truuverk, Andro, Staude, Hermann, Friedrich, Egbert, Tammaru, Toomas, and Wahlberg, Niklas
- Subjects
Lepidoptera ,Insecta ,Arthropoda ,Geometridae ,Animalia ,Biodiversity ,Taxonomy - Abstract
Larentiinae Duponchel, 1845 Larentiinae are a monophyletic entity (Fig. 3). In concordance with the results of Sihvonen et al. (2011), Viidalepp (2011), Õunap, Viidalepp & Truuverk (2016) and Strutzenberger et al. (2017), Dyspteridini are supported as sister to all other larentiines. Remarkably, Brabirodes Warren, 1904 forms an independent lineage. Chesiadini are monophyletic and sister to all larentiines except Dyspteridini, Brabirodes and Trichopterygini. These results do not support the suggestion by Viidalepp (2006) and Sihvonen et al. (2011) that Chesiadini are sister to Trichopterygini. In our phylogenetic hypothesis, Asthenini are sister to the Perizomini + Melanthiini + Eupitheciini clade. These results do not fully agree with Õunap, Viidalepp & Truuverk (2016) who found Asthenini to be sister to all Larentiinae except Dyspteridini, Chesiadini, Trichopterygini and Eudulini. However, our results do support the Melanthiini + Eupitheciini complex as a sister lineage to Perizomini. Sihvonen et al. (2011) recovered Phileremini and Rheumapterini as well-supported sister taxa. Our results suggest Triphosa dubitata Linnaeus 1758 (Triphosini) is sister to Phileremini, with Rheumapterini sister to this clade. Cidariini were recovered as paraphyletic, as the genera Coenotephria Prout, 1914 and Lampropteryx Stephens, 1831 cluster in a different clade (unnamed clade L7) apart from the lineage comprising the type genus of the tribe, Cidaria Treitschke, 1825. Ceratodalia Packard, 1876, currently placed in Hydriomenini and Trichodezia Warren, 1895 are nested within Cidariini. These results are not in concordance with Õunap, Viidalepp & Truuverk (2016), who regarded this tribe to be monophyletic. Scotopterygini are sister to a lineage comprising Ptychorrhoe blosyrata Guenée (1858), Disclisioprocta natalata (Walker, 1862) (placed in the unnamed clade L8), Euphyiini, an unnamed clade L9 comprising the genera Pterocypha, Archirhoe and Obila, Xanthorhoini and Cataclysmini. Euphyiini are monophyletic, but Xanthorhoini are recovered as mixed with Cataclysmini. The same findings were shown by Õunap, Viidalepp & Truuverk (2016), but no taxonomic rearrangements were proposed. Larentiini are monophyletic and sister of Hydriomenini, Heterusiini, Erateinini, Stamnodini and some unnamed clades (L11–14). Although with some differences, our results support the major phylogenetic patterns of Õunap, Viidalepp & Truuverk (2016). Despite substantial progress, the tribal classification and phylogenetic relationships of Larentiinae are far from being resolved (Õunap, Viidalepp & Truuverk, 2016). Forbes (1948) proposed eight tribes based on morphological information, Viidalepp (2011) raised the number to 23 and Õunap, Viidalepp & Truuverk (2016) recovered 25 tribes studying 58 genera. Our study includes 23 of the currently recognized tribes and 125 genera (with an emphasis on Neotropical taxa). However, the phylogenetic position of many taxa remains unclear, and some tropical genera have not yet been formally assigned to any tribe. Formal descriptions of these groups will be treated in detail by G. Brehm et al. (2019, unpublished data) and E. Õunap et al. (2019, unpublished data)., Published as part of Murillo-Ramos, Leidys, Brehm, Gunnar, Sihvonen, Pasi, Hausmann, Axel, Holm, Sille, Ghanavi, Hamid Reza, Õunap, Erki, Truuverk, Andro, Staude, Hermann, Friedrich, Egbert, Tammaru, Toomas & Wahlberg, Niklas, 2019, A comprehensive molecular phylogeny of Geometridae (Lepidoptera) with a focus on enigmatic small subfamilies, pp. 1-39 in PeerJ 7 on pages 18-19, DOI: 10.7717/peerj.7386, http://zenodo.org/record/5767530, {"references":["Sihvonen P, Mutanen M, Kaila L, Brehm G, Hausmann A, Staude HS. 2011. Comprehensive molecular sampling yields a robust phylogeny for geometrid moths (Lepidoptera: Geometridae). PLOS ONE 6 (6): e 20356 DOI 10.1371 / journal. pone. 0020356.","Viidalepp J. 2011. A morphological review of tribes in Larentiinae (Lepidoptera: Geometridae). Zootaxa 3136 (1): 1 - 44 DOI 10.11646 / zootaxa. 3136.1.1.","Ounap E, Viidalepp J, Truuverk A. 2016. Phylogeny of the subfamily Larentiinae (Lepidoptera: Geometridae): integrating molecular data and traditional classifications. Systematic Entomology 21 (4): 824 - 843 DOI 10.1111 / syen. 12195.","Strutzenberger P, Brehm G, Gottsberger B, Bodner F, Seifert CL, Fiedler K. 2017. Diversification rates, host plant shifts and an updated molecular phylogeny of Andean Eois moths (Lepidoptera: Geometridae). PLOS ONE 12 (12): e 018843 DOI 10.1371 / journal. pone. 0188430.","Viidalepp J. 2006. Cladistic analysis of the subfamily Larentiinae. In: Hausmann A, McQuillan P, eds. Proceedings of the Forum Herbulot 2006. Integration of molecular, ecological and morphological data: recent progress towards the higher classification of the Geometridae (Hobart, 19 - 20 January 2006). Spixiana 29: 202 - 203.","Guenee A. 1858. Histoire naturelle des insectes (Lepidoptera), Species General des Lepidopteres. Tom IX. X. Uranides et Phalenites I. II. Paris: Roret, 304.","Forbes WTM. 1948. Lepidoptera of New York and neighboring states. II. Memoirs of the Cornell University Agricultural Experiment Station 274: 1 - 263."]}
- Published
- 2019
- Full Text
- View/download PDF
14. Orthostixinae Meyrick 1892
- Author
-
Murillo-Ramos, Leidys, Brehm, Gunnar, Sihvonen, Pasi, Hausmann, Axel, Holm, Sille, Ghanavi, Hamid Reza, Õunap, Erki, Truuverk, Andro, Staude, Hermann, Friedrich, Egbert, Tammaru, Toomas, and Wahlberg, Niklas
- Subjects
Lepidoptera ,Insecta ,Arthropoda ,Geometridae ,Animalia ,Biodiversity ,Taxonomy - Abstract
Orthostixinae Meyrick, 1892 Orthostixinae were not included in our study. Sihvonen et al. (2011) showed this subfamily as deeply embedded within Ennominae, but unfortunately it was not represented by the type genus of the subfamily. These results agree with Holloway (1996) who examined Orthostixis Hübner, (1823) and suggested the inclusion in Ennominae despite the full development of hindwing vein M2, the presence of a forewing areole and the very broad base of the tympanal ansa. We sampled the species Naxa textilis (Walker, 1856) and Orthostixis cribraria (Hübner, 1799), but only three and one marker were successfully sequenced for these samples, respectively. We included these species in the preliminary analyses but results were so unstable that we excluded them from the final analysis. Further research including fresh material and more genetic markers are needed to investigate the position of Orthostixinae conclusively., Published as part of Murillo-Ramos, Leidys, Brehm, Gunnar, Sihvonen, Pasi, Hausmann, Axel, Holm, Sille, Ghanavi, Hamid Reza, Õunap, Erki, Truuverk, Andro, Staude, Hermann, Friedrich, Egbert, Tammaru, Toomas & Wahlberg, Niklas, 2019, A comprehensive molecular phylogeny of Geometridae (Lepidoptera) with a focus on enigmatic small subfamilies, pp. 1-39 in PeerJ 7 on page 31, DOI: 10.7717/peerj.7386, http://zenodo.org/record/5767530, {"references":["Sihvonen P, Mutanen M, Kaila L, Brehm G, Hausmann A, Staude HS. 2011. Comprehensive molecular sampling yields a robust phylogeny for geometrid moths (Lepidoptera: Geometridae). PLOS ONE 6 (6): e 20356 DOI 10.1371 / journal. pone. 0020356.","Holloway J. 1996. The moths of Borneo, part 9: Geometridae (incl. Orthostixini), Oenochrominae, Desmobathrinae, Geometrinae. Ennominae Malayan Nature Journal 49: 147 - 326."]}
- Published
- 2019
- Full Text
- View/download PDF
15. Desmobathrinae Meyrick 1886
- Author
-
Murillo-Ramos, Leidys, Brehm, Gunnar, Sihvonen, Pasi, Hausmann, Axel, Holm, Sille, Ghanavi, Hamid Reza, Õunap, Erki, Truuverk, Andro, Staude, Hermann, Friedrich, Egbert, Tammaru, Toomas, and Wahlberg, Niklas
- Subjects
Lepidoptera ,Insecta ,Arthropoda ,Geometridae ,Animalia ,Biodiversity ,Taxonomy - Abstract
Desmobathrinae Meyrick, 1886 Taxa placed in Desmobathrinae were formerly recognized as Oenochrominae genera with slender appendages. Holloway (1996) revived Desmobathrinae from synonymy with Oenochrominae and divided it into the tribes Eumeleini and Desmobathrini. Desmobathrinae species have a pantropical distribution and they apparently (still) lack recognized morphological apomorphies (Holloway, 1996). Our phylogenetic analysis has questioned the monophyly of Desmobathrinae sensu Holloway because some species currently placed in Oenochrominae were embedded within the group (see also Sihvonen et al., 2011), and also the phylogenetic position of the tribe Eumeleini is unstable (see below). Desmobathrinae can be regarded as a monophyletic group after the transfer of Zanclopteryx, Nearcha and Racasta from Oenochrominae to Desmobathrinae, and the removal of Eumeleini (Table 2). Desmobathrinae as circumscribed here are an independent lineage that is sister to all Geometridae except Sterrhinae, Larentiinae and Archiearinae. The monobasic Eumeleini has had a dynamic taxonomic history: Eumelea was transferred from Oenochrominae s.l. to Desmobathrinae based on the pupal cremaster (Holloway, 1996), whereas Beljaev (2008) pointed out that Eumelea could be a member of Geometrinae based on the skeleto-muscular structure of the male genitalia. Molecular studies (Sihvonen et al., 2011, Ban et al., 2018) suggested that Eumelea was part of Oenochrominae s.str., but these findings were not well-supported and no formal taxonomic changes were proposed. Our analyses with IQTREE and RAxML recovered Eumeleini in two very different positions, either as sister to Geometrinae (SH-like = 93.6, UFBoot2 = 71) (Figs. 4 and 5), or as sister of Plutodes in Ennominae (RBS = 60) (Data S3). The examination of morphological details suggests that the position as sister to Geometrinae is more plausible: hindwing vein M2 is present and tubular; anal margin of the hindwing is elongated; and large coremata originate from the saccus (Holloway, 1994, our observations). The morphology of Eumelea is partly unusual, and for that reason we illustrate selected structures (Data S4), which include for instance the following: antennae and legs of both sexes are very long; forewing vein Sc (homology unclear) reaches wing margin; in male genitalia coremata are extremely large and branched; uncus is crossshaped (cruciform); tegumen is narrow and it extends ventrally beyond the point of articulation with vinculum; saccus arms are extremely long, looped; and vesica is with lateral rows of cornuti. However, the green geoverdin pigment concentration of Eumelea is low in comparison to Geometrinae (Cook et al., 1994). We tentatively conclude that Eumelea is probably indeed associated with Geometrinae. However, since eleven genetic markers were not sufficient to clarify the phylogenetic affinities of Eumelea, we provisionally place the genus as incertae sedis (Table 2)., Published as part of Murillo-Ramos, Leidys, Brehm, Gunnar, Sihvonen, Pasi, Hausmann, Axel, Holm, Sille, Ghanavi, Hamid Reza, Õunap, Erki, Truuverk, Andro, Staude, Hermann, Friedrich, Egbert, Tammaru, Toomas & Wahlberg, Niklas, 2019, A comprehensive molecular phylogeny of Geometridae (Lepidoptera) with a focus on enigmatic small subfamilies, pp. 1-39 in PeerJ 7 on page 20, DOI: 10.7717/peerj.7386, http://zenodo.org/record/5767530, {"references":["Holloway J. 1996. The moths of Borneo, part 9: Geometridae (incl. Orthostixini), Oenochrominae, Desmobathrinae, Geometrinae. Ennominae Malayan Nature Journal 49: 147 - 326.","Sihvonen P, Mutanen M, Kaila L, Brehm G, Hausmann A, Staude HS. 2011. Comprehensive molecular sampling yields a robust phylogeny for geometrid moths (Lepidoptera: Geometridae). PLOS ONE 6 (6): e 20356 DOI 10.1371 / journal. pone. 0020356.","Beljaev EA. 2008. A new concept of the generic composition of the geometrid moth tribe Ennomini (Lepidoptera, Geometridae) based on functional morphology of the male genitalia. Entomological Review 88 (1): 50 - 60 DOI 10.1134 / S 0013873808010089.","Ban X, Jiang N, Cheng R, Xue D, Han H. 2018. Tribal classification and phylogeny of Geometrinae (Lepidoptera: Geometridae) inferred from seven gene regions. Zoological Journal of the Linnean Society 184 (3): 653 - 672 DOI 10.1093 / zoolinnean / zly 013.","Holloway J. 1994. The moths of Borneo, part 11: family Geometridae, subfamily Ennominae. Malayan Nature Journal 47: 1 - 309.","Cook MA, Harwood LM, Scoble MJ, McGavin GC. 1994. The chemistry and systematic importance of the green wing pigment in emerald moths (Lepidoptera: Geometridae, Geometrinae). Biochemical systematics and ecology 22 (1): 43 - 51 DOI 10.1016 / 0305 - 1978 (94) 90113 - 9."]}
- Published
- 2019
- Full Text
- View/download PDF
16. Archaeobalbini Viidalepp 1981
- Author
-
Murillo-Ramos, Leidys, Brehm, Gunnar, Sihvonen, Pasi, Hausmann, Axel, Holm, Sille, Ghanavi, Hamid Reza, Õunap, Erki, Truuverk, Andro, Staude, Hermann, Friedrich, Egbert, Tammaru, Toomas, and Wahlberg, Niklas
- Subjects
Lepidoptera ,Insecta ,Arthropoda ,Geometridae ,Animalia ,Biodiversity ,Taxonomy - Abstract
Archaeobalbini Viidalepp, 1981, status revised (original spelling: Archeobalbini, justified emendation in Hausmann (1996)) Type genus: Archaeobalbis Prout, 1912 (synonymized with Herochroma Swinhoe, 1893 in Holloway (1996)) Material examined: Herochroma curvata Han & Xue, 2003, H. baba Swinhoe 1893, Metallolophia inanularia Han & Xue, 2004, M. cuneataria Han & Xue, 2004, Actenochroma muscicoloraria (Walker, 1862), Absala dorcada Swinhoe, 1893, Metaterpna batangensis Hang & Stüning, 2016, M. thyatiraria (Oberthür, 1913), Limbatochlamys rosthorni Rothschild, 1894, Psilotagma pictaria (Moore, 1888), Dindica para Swinhoe, 1893, Dindicodes crocina (Butler, 1880), Lophophelma erionoma (Swinhoe, 1893), L. varicoloraria (Moore, 1868), L. iterans (Prout, 1926) and Pachyodes amplificata (Walker, 1862). This lineage splits into four groups: Herochroma Swinhoe, 1893 + Absala Swinhoe, 1893 + Actenochroma Warren, 1893 is the sister lineage of the rest of Archaeobalbini that were recovered as three clades with unresolved relationships comprising the genera Limbatochlamys Rothschild, 1894, Psilotagma Warren, 1894, Metallolophia Warren, 1895, Metaterpna Yazaki, 1992, Dindica Warren, 1893, Dindicodes Prout, 1912, Lophophelma Prout, 1912 and Pachyodes Guenée, 1858. This tribe can be diagnosed by the combination of DNA data from six genetic markers, see for instance Pachyodes amplificata CAD (MG015522), COI (MG014818), EF1a (MG015409), GAPDH (MG014941), MDH (MG015057) and RpS5 (MG015638). Branch support values in IQ-TREE confirm the monophyly of this clade (SH-like = 88.3, UFBoot2 = 64). GenBank accession numbers are shown in Supplementary Material. Amorphological diagnosis requires further research. Xenozancla Warren, 1893 (unnamed G3) is sister to the clade comprising Dysphaniini and Pseudoterpnini s.str. Sihvonen et al. (2011) did not include Xenozancla in their analyses and suggested a sister relationship of Dysphaniini and Pseudoterpnini, but with low support. According to Ban et al. (2018), Xenozancla is more closely related to Pseudoterpnini s.str. than to Dysphaniini. However, due to low support, Ban et al. (2018) did not propose a taxonomic assignment for Xenozancla, which is currently not assigned to a tribe. Although our IQ-TREE results show that Xenozancla is sister to a clade comprising Dysphaniini and Pseudoterpnini s.str., the RAxML analysis did not recover the same phylogenetic relationships. Instead, Dysphaniini + Pseudoterpnini s.str. are found to be sister taxa, but Xenozancla is placed close to Rhomborista monosticta (Wehrli, 1924). As in Ban et al. (2018), our results do not allow us to reach a conclusion about the phylogenetic affinities of these tribes, due to low support of nodes. The Australian genus Crypsiphona Meyrick, 1888 (unnamed G4) was placed close to Hemitheini. Crypsiphona has been assigned to Pseudoterpnini (e. g. Pitkin, Han & James, 2007, Õunap & Viidalepp, 2009), but is recovered as a separate lineage in our tree. Given the isolated position of Crypsiphona, the designation of a new tribe could be considered, but due to low support of nodes in our analyses, further information (including morphology) is needed to confirm the phylogenetic position of this genus. In our phylogenetic hypothesis, a large clade including the former tribes Lophochoristini, Heliotheini, Microloxiini, Thalerini, Rhomboristini, Hemistolini, Comostolini, Jodini and Thalassodini is recovered as sister to the rest of Geometrinae. These results are in full agreement with Ban et al. (2018), who synonymized all of these tribes with Hemitheini. Although the monophyly of Hemitheini is strongly supported, our findings recovered only a few monophyletic subtribes. For example, genera placed in Hemitheina were intermixed with those belonging to Microloxiina, Thalassodina and Jodina. Moreover, many genera which were unassigned to tribe, were recovered as belonging to Hemitheini. Our findings recovered Lophostola Prout, 1912 as sister to all Hemitheini. These results are quite different from those found by Ban et al. (2018) who suggested Rhomboristina as being sister to the rest of Hemitheini. In contrast, our results recovered Rhomboristina mingled with Hemistolina. These different results are probably influenced by the presence of African and Madagascan Lophostola in our analysis. In our opinion the subtribe concept, as applied in Hemitheini earlier, is not practical and we do not advocate its use in geometrid classification., Published as part of Murillo-Ramos, Leidys, Brehm, Gunnar, Sihvonen, Pasi, Hausmann, Axel, Holm, Sille, Ghanavi, Hamid Reza, Õunap, Erki, Truuverk, Andro, Staude, Hermann, Friedrich, Egbert, Tammaru, Toomas & Wahlberg, Niklas, 2019, A comprehensive molecular phylogeny of Geometridae (Lepidoptera) with a focus on enigmatic small subfamilies, pp. 1-39 in PeerJ 7 on pages 24-25, DOI: 10.7717/peerj.7386, http://zenodo.org/record/5767530, {"references":["Holloway J. 1996. The moths of Borneo, part 9: Geometridae (incl. Orthostixini), Oenochrominae, Desmobathrinae, Geometrinae. Ennominae Malayan Nature Journal 49: 147 - 326.","Guenee A. 1858. Histoire naturelle des insectes (Lepidoptera), Species General des Lepidopteres. Tom IX. X. Uranides et Phalenites I. II. Paris: Roret, 304.","Sihvonen P, Mutanen M, Kaila L, Brehm G, Hausmann A, Staude HS. 2011. Comprehensive molecular sampling yields a robust phylogeny for geometrid moths (Lepidoptera: Geometridae). PLOS ONE 6 (6): e 20356 DOI 10.1371 / journal. pone. 0020356.","Ban X, Jiang N, Cheng R, Xue D, Han H. 2018. Tribal classification and phylogeny of Geometrinae (Lepidoptera: Geometridae) inferred from seven gene regions. Zoological Journal of the Linnean Society 184 (3): 653 - 672 DOI 10.1093 / zoolinnean / zly 013.","Pitkin LM, Han HX, James S. 2007. Moths of the tribe Pseudoterpnini (Geometridae: Geometrinae): a review of the genera. Zoological Journal of the Linnean Society 150 (2): 343 - 412 DOI 10.1111 / j. 1096 - 3642.2007.00287. x.","Ounap E, Viidalepp J. 2009. Description of Crypsiphona tasmanica sp. nov. (Lepidoptera: Geometridae: Geometrinae), with notes on limitations in using DNA barcodes for delimiting species. Australian Journal of Entomology 48 (2): 113 - 124 DOI 10.1111 / j. 1440 - 6055.2009.00695. x."]}
- Published
- 2019
- Full Text
- View/download PDF
17. Detecting a difference in reaction norms for size and time at maturation: pheromone strains of the European corn borer (Ostrinia nubilalis: Lepidoptera, Crambidae)
- Author
-
Vellau, Helen, Leppik, Ene, Frerot, Brigitte, Tammaru, Toomas, ProdInra, Migration, University of Tartu, Physiologie de l'Insecte : Signalisation et Communication (PISC), Institut National de la Recherche Agronomique (INRA)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National Agronomique Paris-Grignon (INA P-G), Estonian Science Foundation 9294, Partenariat Hubert Curien (PHC) Parrot program 20668RB, European Union through European Regional Development Fund (Center of Excellence FIBIR), and SF0180122s08
- Subjects
[SDV]Life Sciences [q-bio] ,fungi ,TRADE-OFFS ,INSECTS ,Ostrinia nubilalis ,SEED BEETLE ,Zea mays ,phenology ,EVOLUTION ,[SDV] Life Sciences [q-bio] ,Artemisia vulgaris ,HOST RACES ,POPULATIONS ,growth rate ,insect ,host race ,body size ,DIRECTIONAL SELECTION ,ADAPTATION ,SYMPATRIC SPECIATION ,BODY-SIZE - Abstract
International audience; Background: Sibling herbivore species or host strains specialized to different food plants frequently evolve specific adaptations to their hosts, including host-specific differences in developmental traits (body mass and development time). Such differences may (1) be a consequence of an evolutionary change in relative quality of different hosts, or (2) reflect host-specific changes in the reaction norms for size and time at maturation per se. Aim: Detect a difference in reaction norms for size and time at maturation among the host strains of an herbivorous insect. Organism: European corn borer Ostrinia nubilalis, a polyphagous pest moth with two distinct host plant strains E and Z feeding on hop/mugwort and on maize, respectively. Methods: A laboratory growth trial in which the larvae from these two strains were reared on an artificial diet that was either neutral or included the native host plant of the respective strain. The growth of the larvae was monitored on a daily basis. Results: Larvae from strain Z developed over a longer period and attained higher pupal masses than larvae from strain E, the strains thereby showing systematic differences in reaction norms for time and size at maturation. Conclusion: Examining the sign of the correlation between size and time at maturation at the level of among-strain comparison is recommended as a tool for detecting host-specific changes in the reaction norms for size and time at maturation.
- Published
- 2013
18. Parasitoid communities in a changing Arctic climate : from species traits to ecosystem functioning
- Author
-
Kankaanpää, Tuomas, University of Helsinki, Faculty of Agriculture and Forestry, Department of Agricultural Sciences, Doctoral Programme in Wildlife Biology, Helsingin yliopisto, maatalous-metsätieteellinen tiedekunta, Luonnonvaraisten eliöiden tutkimuksen tohtoriohjelma, Helsingfors universitet, agrikultur-forstvetenskapliga fakulteten, Doktorandprogrammet i forskning om vilda organismer, Tammaru, Toomas, Roslin, Tomas, and Vesterinen, Eero
- Subjects
ekologia - Abstract
Climate change is affecting species distributions and phenologies. These changes may in turn affect how species interact with each other. Thus, species-specific effects of a changing environment are expected to affect the whole food web. Due to this dynamic complexity, community and ecosystem level responses to climate change are still relatively poorly understood. In this thesis I use the Arctic ecosystem to fill in some of this knowledge gap. For this, the interaction webs of Arctic communities are ideal, as they are simple enough to sample adequately. At the same time, the Arctic has been warming twice as fast as the rest of the globe, likely accentuating the effects of climate change. In my thesis, I concentrate on a module of the total food web, the insect parasitoids, insect herbivores and a widespread flowering plant, Mountain Avens (Dryas). I specifically study how climatic factors affect each species in the community, whether species’ responses be predicted based on species traits such as parasitism strategy (koinobiontism versus idiobiontism), and whether different trophic levels respond in concert. To strengthen my conclusions as based on a purely observational study design, I approach these questions at different spatial and temporal scales. I examine local altitudinal gradients within a walking distance. I organize a similar sampling at a geographical scale, which includes latitudinal variation in climate as well as regions which have experienced different types of climate change. Finally, I contrast these spatial snapshots against a real time series at a single location. In the first chapter I asses both how plant and arthropod phenologies respond to climatic factors over time, but also how the landscape level patterns in snow conditions are changing. I found phenological sensitivities of arthropods to vary with their feeding guild, supporting the idea of climate change induced changes in phenological matching between interacting species. The spatial pattern in the relative timing of snowmelt was similar between the years, but with earliest melting areas showing the most variability. In the second chapter I study the local spatial occurrence patterns of parasitoid wasps and flies which use herbivorous butterflies and moths as their hosts. I also investigate the spatial patterns of specific type of herbivory, the florivory on Avens flowers by a specialist herbivore Sympistis zetterstedtii. Furthermore, I study the parasitism rates of parasitoids in the larvae of this particularly abundant moth. I find that warm and dry conditions increase both overall parasitoid occurrence and the levels of herbivory. Parasitoids however showed marked species-specific differences in their spatial occurrence patterns, some of which can be attributed to their species trait of parasitism strategy. Also, the manner in which parasitoid abundance translates into parasitism rate in Sympistis larvae was different between the two influential species. Systematically contrasting responses in the parasitoid community generate the potential for community change as climatic conditions change. In the third and final chapter of this thesis I study spatial patterns in the functional parasitoid community composition as determined by main host group and the influential trait of parasitism strategy. I find that geographical patterns in functional parasitoid communities were best explained not by of the large variation in long-term climatic mean conditions, but by the variation in the rate and mode of climate change during the past 18 years. Parasitoid communities in localities which have experienced more temperature rise during the summer period were characterized by a higher proportion of parasitoids using lepidopteran hosts, and a larger than expected proportion of these are idiobiont. Across a 20-year time series collected at Zackenberg, I find that host group abundances respond to climatic factors as would be expected if realized climate change really has influenced the community compositions of Pan-Arctic parasitoid communities. Taken together, my results show strong evidence for climatically driven community change. It also brings out that such community shifts may already have occurred in the rapidly changing Arctic, and that they have been accompanied by increases in reproductive losses by key plants to herbivory. This suggests that even isolated communities in pristine environments are susceptible to climate induced change. Ilmastonmuutos muuttaa eliöiden levinneisyysalueita ja vuotuista elämänrytmiä. Se missä ja milloin lajit esiintyvät, vaikuttaa välttämättä myös niiden vuorovaikutuksiin muiden lajien kanssa. Näin ympäristömuutosten vaikutusten yksittäisiin lajeihin voidaan odottaa välittyvän ravintoverkkojen rakenteeseen ja toimintaan. Tällaisten välillisten vaikutusten monimutkaisuuden takia yhteisöjen ja ekosysteemien vasteita ilmastonmuutokseen tunnetaan vielä puutteellisesti. Tutkimukseni keskittyykin tarkastelemaan ilmaston muutoksen ekosysteemitason vaikutuksia vähälajisten arktisten eliöyhteisöjen avulla. Arktisten alueiden ilmasto muuttuu nopeammin kuin missään muualla, minkä seurauksena myös eliöyhteisöjen muutokset ovat mahdollisesti korostuneita. Väitöskirjassani tutkin arktisten ravintoverkkojen yhtä osa-aluetta. Siihen kuuluvat lapinvuokko (keskeinen kukkakasvi), sen kukkia syövät perhoset (etenkin pörhönopsayökkönen), lapinvuokkoa pölyttävät kaksisiipiset ja ennen muuta perhosten ja kaksisiipisten toukkia ravinnokseen käyttävät loispistiäiset ja kärpäset, eli parasitoidit. Selvitän miten sää- ja ilmastotekijät kytkeytyvät parasitoidiyhteisöjen rakenteeseen ja niiden perhosisäntien lapinvuokolle aiheuttamiin tuhoihin erisuuruisilla mittakaavoilla ja ajanjaksoilla. Tutkin miten perhosten parasitoidilajit esiintyvät pienilmaston muuttuessa, kun noustaan ylöspäin Kaakkois-Grönlannin Zackenberg-laaksossa sijaitsevan vuoren rinnettä. Tutkin koko parasitoidiyhteisöjen toiminnallista rakennetta eripuolilla Arktista aluetta, jossa eri alueiden sekä ilmasto-olot että niissä viime vuosikymmeninä tapahtuneet muutokset eroavat toisistaan leveysasteesta ja merivirroista riippuen. Lisäksi selvitän, miten lapinvuokolle tuhoja aiheuttavien perhosten runsaus vaihtelee paikallisesti maisemassa, eripuolilla Arktista sekä Zackenberg laaksossa kartutetussa 20 vuoden aikasarjassa. Tutkimuksessani havaitaan systemaattisia eroja erilaisten parasitoidiryhmien vasteissa sää- ja ilmastotekijöihin. Perhostoukkia jälkeläistensä ravintona käyttävät lajit esiintyvät runsaina maiseman lämpimimmillä ja kuivimmilla paikoilla. Niiden osuutta parasitoidiyhteisöissä eripuolilla Arktista selittää keskimääräistä ilmastoa paremmin se kuinka paljon kesälämpötilat ovat alueella nousseet, etenkin suhteessa syksyn lämpötiloihin. Lapinvuokoille aiheutuneiden tuhojen määrä noudattaa tätä samaa kaavaa: suurimpien tuhoprosenttien sijaitessa maiseman lämpimimmissä ja kuivimmissa osissa eli niissä osin Arktista aluetta, jossa erityisesti kesälämpötilat ovat nousseet voimakkaasti. Lisäksi Zackenberg-laaksossa lapinvuokolle aiheutuneiden tuhojen osuus kasvaa lämpimien kesien ja kylmien syksyjen jälkeen. Päinvastaisesti, lapinvuokolle tärkeiden kaksisiipis-pölyttäjien määrä on alhaisempi lämpiminä kesinä ja kylmien syksyjen jälkeen. Tämä näkyy myös niitä ravintonaan käyttävien parasitoidien osuudessa Arktiksenlaajuisesti. Lisäksi paremmin kylmiin olosuhteisiin soveltuvaa elintapaa noudattavat parasitoidilajit (koinobiontit eli hivuttajat) näyttäisivät kesälämpötilojen noustessa käyvän suhteessa harvinaisemmiksi. Tutkimukseni viittaa vahvasti siihen, että lajien välillä on systemaattisia eroja siinä, miten ne reagoivat sää- ja ilmastotekijöihin. Tämä puolestaan voi johtaa, jopa muutoin häiritsemättömien, eliöyhteisöjen rakenteen laajamittaiseen muuttumiseen. Tuloksissa korostuu myös, että eri alueiden ilmastoissa tapahtuvat muutokset ovat erilaisia, joten myös niiden paikalliset ekosysteemivaikutukset poikkeavat toisistaan.
- Published
- 2020
19. Eesti vaksiklaste toidutaimekasutuse fülogeneetilised mustrid
- Author
-
Merzin, Anne, Gerhold, Pille, Tammaru, Toomas, Tartu Ülikool. Loodus- ja täppisteaduste valdkond, and Tartu Ülikool. Zooloogia osakond
- Subjects
fülogenees ,Geometridae ,vaksiklased ,fülogeneetiline signaal ,magistritööd ,spetsialiseerumine ,toidutaimed - Published
- 2020
20. Soost sõltuv ressursside jaotamine (soo allokatsioon) putukatel
- Author
-
Martverk, Merili, Tammaru, Toomas, juhendaja, Tartu Ülikool. Loodus- ja täppisteaduste valdkond, and Tartu Ülikool. Zooloogia osakond
- Subjects
putukad ,allokatsioon ,ressursid ,võsavaksik ,magistritööd ,sugude suhted ,dimorfism ,võrkvaksik - Published
- 2019
21. The conservation of the Cranberry Fritillary Boloria aquilonaris across space and over time : study of a boreo-montane butterfly from distribution to demography
- Author
-
Dubois, Quentin, UCL - SST/ELI/ELIB - Biodiversity, UCL - Faculté des Sciences, Turlure, Camille, Schtickzelle, Nicolas, Baguette, Michel, Dufrêne, Marc, Lebigre, Christophe, Nieberding, Caroline, Tammaru, Toomas, and Van Dyck, Hans
- Abstract
Biodiversity is in crisis and its conservation requires the implementation of preservation and management actions. These should be defined based on the understanding of the interactions of species with their environment. Patterns and processes in ecology, as well as the importance of the environmental factors affecting them, are known to be scale-dependent. Hence, the conservation of species would clearly benefit from research conducted at multiple spatial and temporal scales. My global objective was to understand how the Cranberry Fritillary Boloria aquilonaris, a boreo-montane butterfly of conservation concern in many parts of Europe, responds to environmental conditions across space and over time, from patterns of genetic diversity over the distributional range to variation in local demographic parameters. My aim was to derive conservation guidelines from information collected at multiple scales and integrate the results in a conservation framework as comprehensive as possible. The genetic structure at the distributional range scale is the result of a range expansion from one single glacial refugium, followed by a range contraction that happened within the last 2,000 years. At least four genetic lineages exist in Europe, and might serve as conservation units. Valleys are important features facilitating effective dispersal at the regional scale. Several life stages are sensitive to climatic conditions at the local scale, with consequences for individual survival and population growth rate. A population viability analysis showed that a temperature increase superior to 3°C would largely affect the species persistence. (SC - Sciences) -- UCL, 2018
- Published
- 2018
22. Liblikatel parasiteerivate seente liigirikkus ja ökoloogia
- Author
-
Gielen, Robin, Tammaru, Toomas, juhendaja, Põldmaa, Kadri, juhendaja, Tartu Ülikool. Loodus- ja täppisteaduste valdkond, and Tartu Ülikool. Botaanika osakond
- Subjects
endofüüdid ,elukäiguteooria ,harilik valgevaksik ,Cabera pusaria L ,common white wave ,entomopathogenic fungi ,endophytes ,magistritööd ,entomopatogeensed seened ,life history theory - Abstract
Käesoleva magistritöö üheks eesmärgiks oli uurida liblikatel olevat seenentomopatogeenide liigirikkust. Selleks määrati morfoloogiliste ja molekulaarsete tunnuste abil seened viie eri liblikaliigi (harilik valgevaksik (Cabera pusaria L.), võrkvaksik(Chiasmia clathrata L.), võsavaksik (Ematurga atomaria L.), salu-samblikuvaksik (Hypomecis punctinalis Scopoli) ja kirj-kevadöölane (Orthosia gothica L.)) surnud nukkudel. Kokku tuvastati 17 erinevat seeneliiki 11-st sugukonnast, seitsmest seltsist ja viiest klassist. Entomofaagseid liike, mida kirjanduse põhjal pole liblikalistelt leitud, oli kaks – Metapochonia bulbillosa (W. Gams & Malla) Kepler, S. A. Rehner & Humber ja Tilachlidium brachiatum (Batsch) Petch. Eestile uusi seeneliike määrati viis: Isaria cf. cicadae Miq., Simplicillum cf. lanosoniveum (J.F.H. Beyma) Zare & W. Gams, Metapochonia bulbillosa (W.Gams & Malla) Kepler, S.A.Rehner & Humber, Mortierella verticillata Linnem. ja Umbelopsis ramanniana (Möller) W. Gams. Töö teiseks eesmärgiks oli uurida, mil määral mõjutab seenega nakatumise tõenäosust putuka enda füüsiline konditsioon ja geneetiline taust või on seenhaigusesse nakatumisel määravaks hoopis keskkonnategurid nagu fenoloogiline faas, mikroelupaiga omadused või toidutaim. Selleks kasvatati hariliku valgevaksiku röövikuid looduslähedastes tingimustes ning fikseeriti nende seenetamine. Katse tulemusena näidati ära, et entomopatogeensed seened ei põhjusta harilikul valgevaksikul valikusurvet elupaiga kasutusele, putuka fenoloogiale või toidutaime valikule.
- Published
- 2018
23. Ohustatud Euroopa naaritsa (Mustela lutreola) sigimine ja käitumine tehiskeskkonnas
- Author
-
Kiik, Kairi, Tammaru, Toomas, juhendaja, Maran, Tiit, juhendaja, and Tartu Ülikool. Loodus- ja täppisteaduste valdkond
- Subjects
dissertations ,tehiskeskkond ,dissertatsioonid ,ohustatud liigid ,ETD ,endangered species ,animal behavior ,väitekirjad ,euroopa naarits ,reproductive success ,artificial environment ,loomade käitumine ,paljunemisedukus ,European mink - Abstract
Väitekirja elektrooniline versioon ei sisalda publikatsioone, Euroopa naarits on kriitiliselt ohustatud imetaja, mis on loodusest kadumas. Päästmaks liiki väljasuremisest hakati naaritsaid pidama loomaaedades. Vangistuses on loomade paljundamine keeruline, kuna sealne keskkond erineb looma looduslikust elupaigast. Loomaaias elavatel naaritsatel on täheldatud probleeme sigimisega. Paljud ei saa järglasi, mis võib saada saatuslikuks asurkonna jätkusuutlikkusele. Käesolevas doktoritöös uurisin, miks on naaritsa sigimine loomaaias ebaedukas ja kuidas leida probleemile lahendus. Olukorrast parema ülevaate saamiseks uurisime, mis mõjutab pesakonna suurust ja poegade tõenäosust ellu jääda. Leidsime, et olulised on ema vanus ja kaal, kuid muidu oli emaste sigimisedu sarnane. Lisaks uurisime emase hormonaaltsüklit indlemise ja tiinuse ajal. Tulemused olid ootuspärased, hormonaaltsükkel järgis liigile tüüpilist rada. Me ei leidnud tõendeid, et paaritamiskatsete ebaõnnestumise põhjust tuleks otsida emastest. Leidsime, et ebaedu sigimisel on seotud vangistuses sündinud isastega. Mõni isane on paaritamiskatses emase vastu agressiivne või siis neil puudub indleva emase vastu huvi. Mõistmaks isaste käitumist vaatlesime naaritsate lapsepõlve – uurisime poegade vahelisi suhteid pesakonnas kasvamise ajal. Paljudel imetajatel on tõendatud, et varajane keskkond mõjutab isendi käitumist täiskasvanueas. Me ei leidnud, et naaritsatel oleks pesakonnaperioodil ebanormaalset käitumist. Nagu igati kohane, kulus poegade põhiaeg mängule. Agressiivsust ei olnud palju ja see ei tõusnud ajas. Pesakonnad ei erinenud käitumismustrilt üksteisest, seega ei leidnud me hälbiva poegade käitumisega pesakondi, mis oleksid võinud ebasobiva sigimiskäitumise tekkimist seletada. Töötasime välja metoodika naartisate iseloomutüüpide määramiseks, sest üha enam soovitatakse, et loomadesse tuleks loomaaias suhtuda neist igaühe iseloomu arvestades. Leidsime, et naaritsaid saab eristada julguse, uurivuse ja sotsiaalsuse alusel . Meie töös ilmnes, et probleemid sigimishooajal on seotud eelkõige vangistuses sündinud isastega, nende põhjuseid peaks otsima mujalt kui pesakonnaperioodist, abi võiks olla iga looma iseloomu tundmisest. Saadud tulemused on oluliseks alusteadmisteks töös, mis on suunatud naaritsate tehiskeskkonnas pidamise edukuse tõstmisele., European mink is a critically endangered carnivore which has almost disappeared from nature. To save the species from extinction a captive population was established. Unfortunately, keeping wild animals in captivity always causes problems, just because in a zoo everything is different from the species’ natural habitat. In the case of the European mink, there are problems with breeding in captive conditions. Some animals will fail to produce offspring which may threaten the persistence of the captive population. In this doctorial thesis, I addressed the reasons of breeding failures and how to find solutions to this problem. At first we studied what affects the size and survival of the litter. We found that the weight and age of the mother are most significant. Additionally we studied the hormonal cycle of the females during the mating season and gestation. Results were expectable: the hormonal cycle followed a profile typical of the species. Analysing the diaries kept at Tallinn zoo for 20 years, we did not find that something is wrong on the females’ side. Instead, we found that the breeding problems are caused by males which have been born in captivity. Some males are aggressive toward the female during the mating attempt or remain passive. To understand the reasons for kind of behaviour, we focused on the childhood of the mink: we studied the interactions between the cubs during the litter period. It has often been found that, in mammals, the early environment affects the development of the behaviour of an animal. In our study, however, we did not find abnormalities in cubs’ behaviour during the litter period. As it should be, the most frequent type of behaviour was play. Aggression was low, it did not rise in time and did not differ between the litters. We developed tests to identify personality types in European mink. We found that it is possible to distinguish individual mink in boldness, sociability and exploration. In summary, we found that the main reason why breeding fails in the European mink is in the behaviour of captive born males. The causes of behavioural distortion may not be related to the litter period, an analysis of personality types may help here. The knowledge obtained forms important basis information for the work aimed at improving keeping condition of captive European mink.
- Published
- 2017
24. Putukavastse kasvukiiruse evolutsiooniline ökoloogia: geograafilistest erinevustest biokeemiliste lõivsuheteni
- Author
-
Meister, Hendrik, Tammaru, Toomas, juhendaja, and Tartu Ülikool. Loodus- ja täppisteaduste valdkond
- Subjects
väitekirjad ,dissertations ,putukad ,dissertatsioonid ,evolutionary ecology ,ETD ,evolutsiooniline ökoloogia ,growth rate ,kasvukiirus ,insects ,grubs ,vastsed - Abstract
Väitekirja elektrooniline versioon ei sisalda publikatsioone, Senimaani pole selge, miks on iga putukaliik just sellise kehasuurusega, nagu me teda näeme looduses. Suurem kehasuurus on kasulik, kuna suurematel emastel on enam järglaseid. Samas peab suurest kehast olema ka mingit kahju, muidu toimuks evolutsioonis kehasuuruse pidev suurenemine. Erinevate geograafiliste populatsioonide võrdlemisest võib olla abi mõistmaks, kuidas looduslik valik kehasuurust mõjutab. Kui kuskil on isendid samast liigist suuremad, võime seostada seda erinevust keskkonnaga. Võime ka uurida, mil moel putukad suuremaks kasvavad ja seeläbi jõuda jälile, miks nad seda teevad, aga mujal jällegi ei tee. TÜ entomoloogid kasvatasid Lõuna- ja Põhja-Euroopast (41°N-65°N) pärit kuue ööliblikaliigi röövikuid laboris termokambrites. Katsete eesmärgiks oli võrdlevalt hinnata eri laiuskraadidelt pärit sama liiki putukate geneetilist varieeruvust elukäigutunnustes ja immuunsuses. Üllatuslikult leiti, et Lõuna-ja Põhja-Euroopast pärit isendid kasvad ühtemoodi, vaatamata suuremale kehasuurusele lõunas. Lõunapoolsed liblikad saavutasid suurema kehasuuruse pikema arenguajaga. Samas mida kauem arenetakse, seda pikemat aega ollakse eksponeeritud (lindudepoolsele) kisklussurvele, mistõttu väheneb võimalus jõuda nukkumiseni. See võiks olla üks suurema kehasuuruse kulusid. Putukate kehasurus ja arengukestus sõltub ka temperatuurist. Töös leiti, et temperatuur mõjutab liigikaaslaseid samamoodi: geneetilist varieeruvust temperatuuride mõjudega hakkama saamiseks on vähe. Putukad ei pruugi seetõttu kiiresti kohastuda muutuvate keskkonnatingimustega. Samas leiti populatsioonidevahelisi erinevusi immuunsuses: põhjapool näib immuunvõime olevat tugevam. Seda ehk seetõttu, et seal on olnud suurem vajadus võidelda bakteriaalsete nakkustega, Up until now there is no clear explanation why every insect species has an exact body size in nature. Larger body size is more beneficial, as larger females produce more offspring. At the same time, larger body size must have its costs, because otherwise we would witness unlimited increase in body size in the course of evolution. Comparing different geographical regions may be a way how to determine the effect of natural selection on body size. If at some areas the same species has larger individuals, we can connect body size with respective environments. We can also study how insects acquire larger body size, and as a result learn why larger body size is attained in some but not in other areas. Entomologists from university of Tartu reared six moth species originating from south and north Europe (41°N-65°N) in environmental chambers. The goal was to determine genetic variability in life history traits and immunity using same insect species from different latitudes. Surprisingly, individuals from south and north Europe grew at the same pace, despite all southern individuals being larger, and larger size was attained by longer development. Longer development denotes increased risk of being eaten before reaching pupal stage by (avian) predators. This probably is the cost of larger body size. Insect body size and development was affected also by temperature. We found that within species most individuals are affected the same way: there is lack of variability in dealing with temperature effects. As a result, insects might not evolve quickly, if environmental conditions change. In contrary, we found some among-population differences in immunity: northern individuals are more immune. Possibly because in the north insects may have the need to fight off more bacterial infections compared to their southern conspecifics.
- Published
- 2017
25. Sooti erinev muna suurus liblikatel
- Author
-
Martverk, Merili, Tammaru, Toomas, juhendaja, Tõnissoo, Tambet, juhendaja, Meier, Riho, juhendaja, Tartu Ülikool. Loodus- ja tehnoloogiateaduskond, and Tartu Ülikool. Zoloogia osakond
- Subjects
oogenees ,bakalaureusetööd ,munad ,liblikad ,sooline dimorfism ,soo määramine - Published
- 2016
26. Populatsioonidevahelised erinevused kasvukiirustes putukatel
- Author
-
Niinep, Kerly, Tammaru, Toomas, juhendaja, Tartu Ülikool. Loodus- ja tehnoloogiateaduskond, and Tartu Ülikool. Zooloogia osakond
- Published
- 2013
27. Muna suuruse mõju putukate edukusele hilisemas arengus
- Author
-
Hein, Kaie, Tammaru, Toomas, juhendaja, Tartu Ülikool. Loodus- ja tehnoloogiateaduskond, and Tartu Ülikool. Zooloogia osakond
- Published
- 2013
28. Eesti koibikulised (Opiliones)
- Author
-
Tomasson, Kristiina, Tammaru, Toomas, juhendaja, Kurina, Olavi, juhendaja, Tartu Ülikool. Loodus- ja tehnoloogiateaduskond, and Tartu Ülikool. Zooloogia osakond
- Published
- 2013
29. Võsaritsika Pholidoptera griseoaptera lauluelementide muutlikkus
- Author
-
Runnel, Veljo, Tartu Ülikool. Ökoloogia ja maateaduste instituut, Tartu Ülikool. Zooloogia õppetool, and Tammaru, Toomas, juhendaja
- Subjects
dissertation ,väitekiri ,dissertatsioonid ,ETD ,magistritööd ,insects ,Dark Bush-cricket - Abstract
Teadusmagistritöö
- Published
- 2010
30. Kasvujärk kui piirangute allikas putukate kehasuuruse determinatsioonis
- Author
-
Ivanov, Vitali, Tammaru, Toomas, juhendaja, Tartu Ülikool. Bioloogia-geograafiateaduskond, and Tartu Ülikool. Loomaökoloogia õppetool
- Subjects
developmental biology ,putukad ,kasv ,magistritööd ,kehamõõtmed ,insects ,arengufüsioloogia - Published
- 2006
31. Kasvujärk kui putukate kasvukõvera keskmine element
- Author
-
Esperk, Toomas, Tammaru, Toomas, juhendaja, Tartu Ülikool. Bioloogia-geograafiateaduskond, and Tartu Ülikool. Zooloogia ja hüdrobioloogia instituut
- Subjects
kasvukõverad ,developmental biology ,putukad ,dissertatsioonid ,elutsüklid (biol.) ,kehamõõtmed ,insects - Published
- 2006
32. Kogemuse mõju munemissubstraadi aktsepteerimisele liblikatel
- Author
-
Javoiš, Juhan, Tammaru, Toomas, juhendaja, Tartu Ülikool. Bioloogia-geograafiateaduskond, and Tartu Ülikool. Loomaökoloogia õppetool
- Subjects
Lepidoptera ,kogemus ,butterflies ,sigimisbioloogia ,dissertatsioonid ,reproductive biology ,liblikalised - Published
- 2005
33. Influence of predation on the body size evolution in insects. Implications of colour
- Author
-
Mänd, Triinu, Tammaru, Toomas, juhendaja, Tartu Ülikool. Bioloogia-geograafiateaduskond, and Tartu Ülikool. Loomaökoloogia õppetool
- Subjects
putukad ,adaptatsioon (biol.) ,adaption ,toitumisökoloogia ,magistritööd ,insects ,röövloomad ,vastsed - Published
- 2004
34. Erinevate vaksikuliikide munemisselektiivsus ja selle mõõtmine
- Author
-
Javoiš, Juhan, Tammaru, Toomas, juhendaja, Tartu Ülikool. Loodus- ja täppisteaduste valdkond, and Tartu Ülikool. Zoloogia osakond
- Subjects
bakalaureusetööd ,populatsioonid (biol.) ,paljunemine ,vaksiklased ,paljunemisökoloogia - Abstract
https://www.ester.ee/record=b5500644*est
- Published
- 1998
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.