Sally Theobald, Emmanuel Nnamdi Emenyonu, Carl-Michael Nathanson, Rachel Anderson de Cuevas, Abraham Aseffa, Jeevan B. Sherchand, Amin Al-Absi, Nasher Al-Aghbari, Najla Al-Sonboli, Juliana Olubunmi Onuoha, Isabel Arbide, Jean Joly, Melkamsew Aschalew, Mosis Ifenyi Okobi, Lovett Lawson, Mohammed A. Yassin, Stephen Bertel Squire, Andrew Ramsay, Greg Harper, Brian Faragher, Luis E. Cuevas, and Yared Merid
This study, nested within a clinical trial, by Luis Cuevas and colleagues finds that LED-FM microscopy has higher sensitivity but lower specificity than Zn microscopy for detecting tuberculosis in sputum samples., Background The diagnosis of tuberculosis (TB) in resource-limited settings relies on Ziehl-Neelsen (ZN) smear microscopy. LED fluorescence microscopy (LED-FM) has many potential advantages over ZN smear microscopy, but requires evaluation in the field. The aim of this study was to assess the sensitivity/specificity of LED-FM for the diagnosis of pulmonary TB and whether its performance varies with the timing of specimen collection. Methods and Findings Adults with cough ≥2 wk were enrolled consecutively in Ethiopia, Nepal, Nigeria, and Yemen. Sputum specimens were examined by ZN smear microscopy and LED-FM and compared with culture as the reference standard. Specimens were collected using a spot-morning-spot (SMS) or spot-spot-morning (SSM) scheme to explore whether the collection of the first two smears at the health care facility (i.e., “on the spot”) the first day of consultation followed by a morning sample the next day (SSM) would identify similar numbers of smear-positive patients as smears collected via the SMS scheme (i.e., one on-the-spot-smear the first day, followed by a morning specimen collected at home and a second on-the-spot sample the second day). In total, 529 (21.6%) culture-positive and 1,826 (74.6%) culture-negative patients were enrolled, of which 1,156 (49%) submitted SSM specimens and 1,199 (51%) submitted SMS specimens. Single LED-FM smears had higher sensitivity but lower specificity than single ZN smears. Using two LED-FM or two ZN smears per patient was 72.8% (385/529, 95% CI 68.8%–76.5%) and 65.8% (348/529, 95% CI 61.6%–69.8%) sensitive (p, Editors' Summary Background Tuberculosis is a global public health problem. Every year, about 1.7 million people die from this contagious bacterial infection, and about 9 million new cases occur, mainly in low- and middle-income countries. Mycobacterium tuberculosis, which causes tuberculosis, is spread in airborne droplets when people with the disease cough or sneeze, and usually infects the lungs (pulmonary tuberculosis). Symptoms of tuberculosis include a persistent cough, weight loss, and night sweats. Because tuberculosis is easily transmitted and potentially deadly, it is important that it is diagnosed quickly and accurately and immediately treated. The “gold standard” diagnostic test for tuberculosis is mycobacterial culture (in liquid or solid medium), in which laboratory technicians try to grow M. tuberculosis from sputum (mucus brought up from the lungs by coughing). However, this test is expensive, so most patients suspected of having pulmonary tuberculosis in resource-limited countries are investigated using sputum smear microscopy. In this cheaper but less sensitive test, sputum samples are “smeared” onto microscope slides, stained with Ziehl-Neelsen (ZN) dye, and then examined with a microscope for the presence of M. tuberculosis. Why Was This Study Done? With smear microscopy, multiple samples have to be examined to increase the test's sensitivity (the proportion of patients with culture-positive tuberculosis that the test detects). Because each smear examination takes up to 10 minutes, tuberculosis diagnosis with ZN smear microscopy creates a large laboratory workload. A variant form of smear microscopy—light-emitting-diode fluorescence microscopy (LED-FM)—could reduce this workload. With LED-FM, smears stained with a fluorescent dye can be examined in a quarter of the time it takes to examine ZN smears. In this study, the researchers evaluate the sensitivity and specificity (the proportion of people with a negative smear among people without tuberculosis; a high specificity indicates a low false-positive rate) of LED-FM using samples collected in a trial undertaken in four resource-limited countries (Ethiopia, Nepal, Nigeria, and Yemen) to investigate two schemes for sputum sample collection. In the spot-morning-spot (SMS) scheme, patients provide an on-the-spot specimen at their initial consultation, a specimen collected at home the next morning, and a second on-the-spot sample when they deliver their morning specimen. In the spot-spot-morning (SSM) scheme, patients provide two on-the-spot samples during their first clinic visit and a sample collected at home the next morning. What Did the Researchers Do and Find? In the main trial, the researchers collected sputum samples using the SMS or SSM scheme from 6,627 patients with a cough lasting more than two weeks. For their investigation of LED-FM, they examined nearly 2,400 samples (half SSM and half SMS specimens, about a quarter of which were tuberculosis culture-positive) with both ZN smear microscopy and LED-FM and determined the sensitivity and specificity of both tests—with one, two, or three sputum samples per patient—relative to mycobacterial solid culture. Single LED-FM smears had higher sensitivity but lower specificity than single ZN smears. The sensitivities of two LED-FM and two ZN smears were 72.8% and 65.8%, respectively; the specificities of these tests were 90.9% and 98.0%. The sensitivities of three LED-FM and three ZN smears were 77% and 70.5%, respectively; the specificities of these tests were 88.1% and 96.5%. The sensitivity and specificity of both tests was similar for samples collected using the SMS and the SSM schemes. What Do These Findings Mean? These findings show that in the resource-limited countries included in this trial, LED-FM has a higher sensitivity but lower specificity than ZN smear microscopy. The researchers calculate that in this study the accuracy of three LED-FM examinations was 85% (2,017 out of 2,355 patients were correctly classified as infected or uninfected), whereas the accuracy of three ZN smears was 91.8%. Thus, although LED-FM should identify more people with tuberculosis than ZN smear microscopy, because of its lower specificity, its use might also lead to more people without tuberculosis being needlessly treated for the disease. Nevertheless, provided that the introduction of LED-FM is accompanied by appropriate training and performance monitoring, LED-FM is an attractive potential tool for the laboratory diagnosis of tuberculosis that, together with a move towards the collection of two on-the-spot smears in a single clinic visit, could ensure that poor patients have access to timely tuberculosis diagnosis and prompt treatment. Additional Information Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001057. Details of the parent trial in which the samples used in this study were collected are available in a PLoS Medicine Research Article by Cuevas et al. The World Health Organization provides information on all aspects of tuberculosis, including information on tuberculosis diagnostics; recent WHO policy statements on diagnosis of tuberculosis are available; the Stop TB Partnership provides information on global tuberculosis control (some information in several languages) The US Centers for Disease Control and Prevention has information about tuberculosis, including information on the diagnosis of tuberculosis disease The US National Institute of Allergy and Infectious Diseases also has detailed information on all aspects of tuberculosis MedlinePlus has links to further information about tuberculosis (in English and Spanish) A new Web site dedicated to the discussion and optimization of smear microscopy has recently been launched