6 results on '"Stefan Glunz"'
Search Results
2. Remanufacturing Perovskite Solar Cells and Modules – a Holistic Case Study
- Author
-
Dmitry Bogachuk, Peter van der Windt, Lukas Wagner, David Martineau, Stephanie Narbey, Anand Verma, Jaekeun Lim, Salma Zouhair, Markus Kohlstädt, Andreas Hinsch, Samuel Stranks, Uli Würfel, and Stefan Glunz
- Abstract
While perovskite photovoltaic (PV) devices are on the verge of their commercialization, promising methods to recycle or remanufacture fully-encapsulated perovskite solar cells (PSCs) and modules are still missing. Through detailed life-cycle assessment shown in this work, we identify that the majority of the greenhouse gas emissions can be reduced by re-using the glass substrate and parts of the PV cells. Based on these analytical findings, we develop a novel thermally-assisted mechanochemical approach to remove the encapsulants, the electrode and the perovskite absorber, allowing to re-use most of the device constituents for remanufacturing PSCs, which recovered nearly 90% of their initial performance. This remanufacturing strategy allows to save up to 33% of the module’s global warming potential. Finally, we demonstrate that the CO2-footprint of these remanufactured devices can become less than 30g/kWh, which is the value for state-of-the-art c-Si PV modules and can even reach 15g/kWh assuming a similar lifetime
- Published
- 2022
- Full Text
- View/download PDF
3. 21.4% Efficient SMART mono-Si PERC Solar Cells with Adapted Firing Process for LeTID Mitigation
- Author
-
Felix Maischner, Stephan Maus, Johannes Greulich, Sabrina Lohmüller, Elmar Lohmüller, Pierre Saint-Cast, Daniel Ourinson, Karin Hergert, Stephan Riepe, Stefan Glunz, and Stefan Rein
- Published
- 2022
- Full Text
- View/download PDF
4. Revealing Fundamentals of Charge Extraction in Photovoltaic Devices Through Potentiostatic Photoluminescence Imaging
- Author
-
Lukas Wagner, Patrick Schygulla, Jan Herterich, Mohamed Elshamy, Dmitry Bogachuk, Salma Zouhair, Simone Mastroianni, Uli Würfel, Yuhang Liu, Shaik Zakeeruddin, Michael Graetzel, Andreas Hinsch, Stefan Glunz, and Publica
- Subjects
photocurrent imaging ,MAP3: Understanding ,FOS: Physical sciences ,Applied Physics (physics.app-ph) ,Physics - Applied Physics ,perovskite solar cells ,short-circuit current ,photoluminescence imaging ,solar-cells ,charge extraction ,hysteresis ,circuit current-density ,General Materials Science ,photoluminescence ,III-V solar cells ,local analysis ,series resistance ,degradation - Abstract
The photocurrent density-voltage (J(V)) curve is the fundamental characteristic to assess opto-electronic devices, in particular solar cells. However, it only yields information on the performance integrated over the entire active device area. Here, a method to determine a spatially resolved photocurrent image by voltage-dependent photoluminescence microscopy is derived from basic principles. The opportunities and limitations of the approach are studied by the investigation of III-V and perovskite solar cells. This approach allows the real-time assessment of the microscopically resolved local J(V) curve, the steady-state Jsc, as well as transient effects. In addition, the measurement contains information on local charge extraction and interfacial recombination. This facilitates the identification of regions of non-ideal charge extraction in the solar cells and enables to link these to the processing conditions. The proposed technique highlights that, combined with potentiostatic measurements, luminescence microscopy turns out to be a powerful tool for the assessment of performance losses and the improvement of solar cells.
- Published
- 2021
- Full Text
- View/download PDF
5. Photovoltaik, Lehrbuch zu Grundlagen, Technologie und Praxis. Von K. Mertens
- Author
-
Stefan Glunz
- Published
- 2012
- Full Text
- View/download PDF
6. Preparation of a TiO2 porous layer by molding of polymer beads for perovskite solar cells application
- Author
-
Yasaroglu Unal, Kubra, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Albert-Ludwigs-Universität (Freiburg im Breisgau, Allemagne), Aziz Dinia, Stefan Glunz, STAR, ABES, Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, and Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)
- Subjects
[SPI.OTHER]Engineering Sciences [physics]/Other ,TiO2 porous layer ,Perovskites solar cells ,Voie sol-gel ,[SPI.OTHER] Engineering Sciences [physics]/Other ,Cellule solaire pérovskite ,Polymer beads ,Couche poreuse TiO2 ,Billes de polymères ,Sol-gel method - Abstract
The perovskite based solar cells is a new generation solar cell type, the perovskite crystals act as photo-charge-generating materials with organic and inorganic elements more commonly referred to as "halide hybrid perovskite" (ABX3 with A the organic part, B the inorganic part and X an halogen). In addition, they are low-cost materials that are easy to develop, which is a major advantage for this type of cell. There are different types of perovskite-based solar cells (PSC) with different designs. This work focuses on the so-called "monolithic" PSC configuration, which is composed of different porous layers; including TiO2 deposited from commercial pastes by "screen-printing" technique into perovskite crystals infiltrate. In this cell graphite (p type) is used as cathode while FTO (Fluorine Tin Oxide, n type) on glass is used as anode. The aim is to obtain a TiO2 layer with a higher porous volume with respect to the one done commercially, so the quantity of photo-active materials that infiltrates it can be increased and in this sense higher efficiency could be reached. Indeed, up to 9% has been obtained for the optimized cells with the new configuration of porous TiO2 layer obtained by bead molding in comparison with a 6% for reference cells (commercially produced porous layer)., Les cellules solaires à base de pérovskite sont considérées comme cellules de nouvelles génération, les cristaux de pérovskite jouent le rôle de matériaux photo-générateurs de charges avec des éléments organiques et inorganiques plus communément appelés « perovskite hybride halogéné » (ABX3 avec avec A la partie organique, B la partie inorganique et X un halogène). De plus, ce sont des matériaux à faible coût et simple à élaborer ce qui présente un avantage majeur pour ce genre de cellule. Il existe différents types de cellules à base perovskite (PSC) avec différentes architectures. Ce travail porte plus particulièrement sur la configuration de PSC dite « monolithique » qui est composée de différentes couches poreuses, dont le TiO2 déposé à partir de pâtes commerciales par « screen-printing » dans lesquelles s’infiltrent les cristaux de perovskite. Dans cette cellule le graphite (type p) est utilisé comme cathode tandis que le FTO (Fluorine Tin Oxide, type n) sur verre est utilisé comme anode. Le but est d’obtenir une couche TiO2 avec un volume poreux plus important par rapport à celui réalisé par voie commerciale, afin d’augmenter la quantité de matériaux photo-actifs qui s’y infiltre et d’atteindre ainsi un rendement supérieur. En effet, jusqu’à 9% a été obtenu pour les cellules optimisées avec la nouvelle configuration de couche poreuse de TiO2 obtenue par moulage de billes contre 6% pour les cellules références (couche poreuse élaboré par voie commerciale).
- Published
- 2019
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.